Skip to contents

Continuous distributions

Discrete distributions

  • betabinom(size, shape1, shape2): Beta-binomial distribution parameterised by size size, shape parameters shape1 and shape2

  • genpois(lambda, phi): Generalised Poisson distribution parameterised by mean lambda and dispersion phi

  • nbinom2(mu, size): Negative binomial distribution reparameterised by mean mu and size size

  • zibinom(size, prob, zeroprob): Zero-inflated binomial distribution parameterised by size size, success probability prob and zero-probability zeroprob

  • zinbinom(size, prob, zeroprob): Zero-inflated negative binomial distribution parameterised by size size, success probability prob and zero-probability zeroprob

  • zinbinom2(mu, size, zeroprob): Zero-inflated negative binomial distribution reparameterised by mean mu, size size and zero-probability zeroprob

  • zipois(lambda, zeroprob): Zero-inflated Poisson distribution parameterised by rate lambda and zero-probability zeroprob

  • ztbinom(size, prob): Zero-truncated binomial distribution parameterised by size size and success probability prob

  • ztnbinom(size, prob): Zero-truncated negative binomial distribution parameterised by size size and success probability prob

  • ztnbinom2(mu, size): Zero-truncated negative binomial distribution reparameterised by mean mu and size size

  • ztpois(lambda): Zero-truncated Poisson distribution parameterised by rate lambda

Multivariate distributions

  • dirichlet(alpha): Dirichlet distribution parameterised by concentration parameter vector alpha

  • dirmult(size, alpha): Dirichlet-multinomial distribution parameterised by size and concentration parameters alpha

  • mvt(mu, Sigma, df): Multivariate t-distribution parameterised by location mu, scale matrix Sigma and degrees of freedom df

  • vmf(mu, kappa): Multivariate von Mises-Fisher distribution parameterised by unit mean vector mu and concentration kappa

  • vmf2(theta): Multivariate von Mises-Fisher distribution parameterised by parameter theta equal to unit mean vector mu times concentration scalar kappa

  • wishart(nu, Sigma): Wishart distribution parameterised by degrees of freedom nu and scale matrix Sigma

Copulas

Bivariate copulas can be implemented in a modular way using the dcopula function together with one of the copula constructors below. Available copula constructors are: