List of distributions
distlist.RmdContinuous distributions
bccg(mu, sigma, nu): Box-Cox Cole and Green distribution parameterised by locationmu, scalesigma, and skewnessnubcpe(mu, sigma, nu, tau): Box-Cox power exponential distribution parameterised by locationmu, scalesigma,nu, andtaubct(mu, sigma, nu, tau): Box-Cox t-distribution parameterised by locationmu, scalesigma, skewnessnu, and degrees of freedomtaubeta2(mu, phi): Beta distribution reparameterised by meanmuand precisionphiexgauss(mu, sigma, lambda): Exponentially modified Gaussian distribution parameterised by locationmu, scalesigmaand ratelambdafoldnorm(mu, sigma): Folded normal distribution parameterised by locationmuand scalesigmagamma2(mean, sd): Gamma distribution reparameterised by mean and standard deviationgumbel(location, scale): Gumbel distribution parameterised by location and scaleinvgauss(mean, shape): Inverse Gaussian distribution parameterised by mean and shapelaplace(mu, b): Laplace distribution parameterised by locationmuand scaleboibeta(shape1, shape2, oneprob): One-inflated beta distribution parameterised by shape parametersshape1,shape2and one-probabilityoneproboibeta2(mu, phi, oneprob): One-inflated beta distribution reparameterised by meanmu, precisionphi, and one-probabilityoneprobpareto(mu): Pareto distribution parameterised bymupowerexp(mu, sigma, nu): Power exponential distribution parameterised by meanmu, standard deviationsigmaand shapenupowerexp2(mu, sigma, nu): Power exponential distribution reparameterised by locationmu, scalesigmaand shapenupgweibull(scale, shape, powershape): Power generalised Weibull distribution parameterised byscale,shapeandpowershapeskewnorm(xi, omega, alpha): Skew normal distribution parameterised by locationxi, scaleomegaand skewnessalphaskewnorm2(mean, sd, alpha): Skew normal distribution reparameterised by mean, standard deviation and skewnessalphaskewt(mu, sigma, skew, df): Skew t-distribution parameterised by locationmu, scalesigma, skewnessskewand degrees of freedomdfskewt2(mean, sd, skew, df): Skew t-distribution reparameterised by mean, standard deviation, skewnessskewand degrees of freedomdftruncnorm(mean, sd, min, max): Truncated normal distribution parameterised by mean, standard deviation, lower boundminand upper boundmaxtrunct(df, min, max): Truncated t-distribution parameterised by degrees of freedomdf, lower boundminand upper boundmaxtrunct2(df, mu, sigma, min, max): Truncated t-distribution parameterised locationmu, scalesigma, degrees of freedomdf, lower boundminand upper boundmaxt2(mu, sigma, df): Non-central and scaled t-distribution parameterised by locationmu, scalesigmaand degrees of freedomdfvm(mu, kappa): Von Mises distribution parameterised by mean directionmuand concentrationkappawrpcauchy(mu, rho): Wrapped Cauchy distribution parameterised by mean directionmuand concentrationrhozibeta(shape1, shape2, zeroprob): Zero-inflated beta distribution parameterised by shape parametersshape1,shape2and zero-probabilityzeroprobzibeta2(mu, phi, zeroprob): Zero-inflated beta distribution reparameterised by meanmu, precisionphi, and zero-probabilityzeroprobzigamma(shape, scale, zeroprob): Zero-inflated gamma distribution parameterised by shape and scale, with a zero-probabilityzeroprobzigamma2(mean, sd, zeroprob): Zero-inflated gamma distribution reparameterised by mean, standard deviation and zero-probabilityzeroprobziinvgauss(mean, shape, zeroprob): Zero-inflated inverse Gaussian distribution parameterised by mean, shape and zero-probabilityzeroprobzilnorm(meanlog, sdlog, zeroprob): Zero-inflated log normal distribution parameterised by meanlog, sdlog and zero-probabilityzeroprobzoibeta(shape1, shape2, zeroprob, oneprob): Zero- and one-inflated beta distribution parameterised by shape parametersshape1,shape2, zero-probabilityzeroproband one-probabilityoneprobzoibeta2(mu, phi, zeroprob, oneprob): Zero- and one-inflated beta distribution reparameterised by meanmu, precisionphi, zero-probabilityzeroproband one-probabilityoneprob
Discrete distributions
betabinom(size, shape1, shape2): Beta-binomial distribution parameterised by sizesize, shape parametersshape1andshape2genpois(lambda, phi): Generalised Poisson distribution parameterised by meanlambdaand dispersionphinbinom2(mu, size): Negative binomial distribution reparameterised by meanmuand sizesizezibinom(size, prob, zeroprob): Zero-inflated binomial distribution parameterised by sizesize, success probabilityproband zero-probabilityzeroprobzinbinom(size, prob, zeroprob): Zero-inflated negative binomial distribution parameterised by sizesize, success probabilityproband zero-probabilityzeroprobzinbinom2(mu, size, zeroprob): Zero-inflated negative binomial distribution reparameterised by meanmu, sizesizeand zero-probabilityzeroprobzipois(lambda, zeroprob): Zero-inflated Poisson distribution parameterised by ratelambdaand zero-probabilityzeroprobztbinom(size, prob): Zero-truncated binomial distribution parameterised by sizesizeand success probabilityprobztnbinom(size, prob): Zero-truncated negative binomial distribution parameterised by sizesizeand success probabilityprobztnbinom2(mu, size): Zero-truncated negative binomial distribution reparameterised by meanmuand sizesizeztpois(lambda): Zero-truncated Poisson distribution parameterised by ratelambda
Multivariate distributions
dirichlet(alpha): Dirichlet distribution parameterised by concentration parameter vectoralphadirmult(size, alpha): Dirichlet-multinomial distribution parameterised bysizeand concentration parametersalphamvt(mu, Sigma, df): Multivariate t-distribution parameterised by locationmu, scale matrixSigmaand degrees of freedomdfvmf(mu, kappa): Multivariate von Mises-Fisher distribution parameterised by unit mean vectormuand concentrationkappavmf2(theta): Multivariate von Mises-Fisher distribution parameterised by parameterthetaequal to unit mean vectormutimes concentration scalarkappawishart(nu, Sigma): Wishart distribution parameterised by degrees of freedomnuand scale matrixSigma
Copulas
Bivariate copulas can be implemented in a modular way using the dcopula function
together with one of the copula constructors below. Available copula
constructors are:
-
cgaussian(rho)(Gaussian copula) -
cclayton(theta)(Clayton copula) -
cgumbel(theta)(Gumbel copula) -
cfrank(theta)(Frank copula)
For bivariate copulas with discrete margins, use the ddcopula function
instead. In this case, instead of copula densities, copula
CDFs are needed. The available constructors for this are:
Multivariate copulas are also possible using the dmvcopula function
together with one of the multivariate copula constructors below.
Currently, only the multivariate Gaussian copula is implemented in two
ways:
-
cmvgauss(R)(multivariate Gaussian copula parameterised by a correlation matrix) -
cgmrf(Q)(multivariate Gaussian copula parameterised by an inverse correlation matrix)