List of distributions
distlist.Rmd
Continuous distributions
bccg(mu, sigma, nu)
: Box-Cox Cole and Green distribution parameterised by locationmu
, scalesigma
, and skewnessnu
bcpe(mu, sigma, nu, tau)
: Box-Cox power exponential distribution parameterised by locationmu
, scalesigma
,nu
, andtau
bct(mu, sigma, nu, tau)
: Box-Cox t-distribution parameterised by locationmu
, scalesigma
, skewnessnu
, and degrees of freedomtau
beta2(mu, phi)
: Beta distribution reparameterised by meanmu
and precisionphi
exgauss(mu, sigma, lambda)
: Exponentially modified Gaussian distribution parameterised by locationmu
, scalesigma
and ratelambda
foldnorm(mu, sigma)
: Folded normal distribution parameterised by locationmu
and scalesigma
gamma2(mean, sd)
: Gamma distribution reparameterised by mean and standard deviationgumbel(location, scale)
: Gumbel distribution parameterised by location and scaleinvgauss(mean, shape)
: Inverse Gaussian distribution parameterised by mean and shapelaplace(mu, b)
: Laplace distribution parameterised by locationmu
and scaleb
oibeta(shape1, shape2, oneprob)
: One-inflated beta distribution parameterised by shape parametersshape1
,shape2
and one-probabilityoneprob
oibeta2(mu, phi, oneprob)
: One-inflated beta distribution reparameterised by meanmu
, precisionphi
, and one-probabilityoneprob
pareto(mu)
: Pareto distribution parameterised bymu
powerexp(mu, sigma, nu)
: Power exponential distribution parameterised by meanmu
, standard deviationsigma
and shapenu
powerexp2(mu, sigma, nu)
: Power exponential distribution reparameterised by locationmu
, scalesigma
and shapenu
skewnorm(xi, omega, alpha)
: Skew normal distribution parameterised by locationxi
, scaleomega
and skewnessalpha
skewnorm2(mean, sd, alpha)
: Skew normal distribution reparameterised by mean, standard deviation and skewnessalpha
skewt(mu, sigma, skew, df)
: Skew t-distribution parameterised by locationmu
, scalesigma
, skewnessskew
and degrees of freedomdf
truncnorm(mean, sd, min, max)
: Truncated normal distribution parameterised by mean, standard deviation, lower boundmin
and upper boundmax
trunct(df, min, max)
: Truncated t-distribution parameterised by degrees of freedomdf
, lower boundmin
and upper boundmax
trunct2(df, mu, sigma, min, max)
: Truncated t-distribution parameterised locationmu
, scalesigma
, degrees of freedomdf
, lower boundmin
and upper boundmax
t2(mu, sigma, df)
: Non-central and scaled t-distribution parameterised by locationmu
, scalesigma
and degrees of freedomdf
vm(mu, kappa)
: Von Mises distribution parameterised by mean directionmu
and concentrationkappa
wrpcauchy(mu, rho)
: Wrapped Cauchy distribution parameterised by mean directionmu
and concentrationrho
zibeta(shape1, shape2, zeroprob)
: Zero-inflated beta distribution parameterised by shape parametersshape1
,shape2
and zero-probabilityzeroprob
zibeta2(mu, phi, zeroprob)
: Zero-inflated beta distribution reparameterised by meanmu
, precisionphi
, and zero-probabilityzeroprob
zigamma(shape, scale, zeroprob)
: Zero-inflated gamma distribution parameterised by shape and scale, with a zero-probabilityzeroprob
zigamma2(mean, sd, zeroprob)
: Zero-inflated gamma distribution reparameterised by mean, standard deviation and zero-probabilityzeroprob
ziinvgauss(mean, shape, zeroprob)
: Zero-inflated inverse Gaussian distribution parameterised by mean, shape and zero-probabilityzeroprob
zilnorm(meanlog, sdlog, zeroprob)
: Zero-inflated log normal distribution parameterised by meanlog, sdlog and zero-probabilityzeroprob
zoibeta(shape1, shape2, zeroprob, oneprob)
: Zero- and one-inflated beta distribution parameterised by shape parametersshape1
,shape2
, zero-probabilityzeroprob
and one-probabilityoneprob
zoibeta2(mu, phi, zeroprob, oneprob)
: Zero- and one-inflated beta distribution reparameterised by meanmu
, precisionphi
, zero-probabilityzeroprob
and one-probabilityoneprob
Discrete distributions
betabinom(size, shape1, shape2)
: Beta-binomial distribution parameterised by sizesize
, shape parametersshape1
andshape2
genpois(lambda, phi)
: Generalised Poisson distribution parameterised by meanlambda
and dispersionphi
nbinom2(mu, size)
: Negative binomial distribution reparameterised by meanmu
and sizesize
zibinom(size, prob, zeroprob)
: Zero-inflated binomial distribution parameterised by sizesize
, success probabilityprob
and zero-probabilityzeroprob
zinbinom(size, prob, zeroprob)
: Zero-inflated negative binomial distribution parameterised by sizesize
, success probabilityprob
and zero-probabilityzeroprob
zinbinom2(mu, size, zeroprob)
: Zero-inflated negative binomial distribution reparameterised by meanmu
, sizesize
and zero-probabilityzeroprob
zipois(lambda, zeroprob)
: Zero-inflated Poisson distribution parameterised by ratelambda
and zero-probabilityzeroprob
ztbinom(size, prob)
: Zero-truncated binomial distribution parameterised by sizesize
and success probabilityprob
ztnbinom(size, prob)
: Zero-truncated negative binomial distribution parameterised by sizesize
and success probabilityprob
ztnbinom2(mu, size)
: Zero-truncated negative binomial distribution reparameterised by meanmu
and sizesize
ztpois(lambda)
: Zero-truncated Poisson distribution parameterised by ratelambda
Multivariate distributions
dirichlet(alpha)
: Dirichlet distribution parameterised by concentration parameter vectoralpha
dirmult(size, alpha)
: Dirichlet-multinomial distribution parameterised bysize
and concentration parametersalpha
mvt(mu, Sigma, df)
: Multivariate t-distribution parameterised by locationmu
, scale matrixSigma
and degrees of freedomdf
vmf(mu, kappa)
: Multivariate von Mises-Fisher distribution parameterised by unit mean vectormu
and concentrationkappa
vmf2(theta)
: Multivariate von Mises-Fisher distribution parameterised by parametertheta
equal to unit mean vectormu
times concentration scalarkappa
wishart(nu, Sigma)
: Wishart distribution parameterised by degrees of freedomnu
and scale matrixSigma
Copulas
Bivariate copulas can be implemented in a modular way using the dcopula
function
together with one of the copula constructors below. Available copula
constructors are:
-
cgaussian(rho)
(Gaussian copula) -
cclayton(theta)
(Clayton copula) -
cgumbel(theta)
(Gumbel copula) -
cfrank(theta)
(Frank copula)