Skip to contents

Density, distribution function, and random generation for the zero-inflated inverse Gaussian distribution.

Usage

dziinvgauss(x, mean = 1, shape = 1, zeroprob = 0, log = FALSE)

pziinvgauss(q, mean = 1, shape = 1, zeroprob = 0, lower.tail = TRUE, log.p = FALSE)

rziinvgauss(n, mean = 1, shape = 1, zeroprob = 0)

Arguments

x, q

vector of quantiles

mean

location parameter

shape

shape parameter, must be positive.

zeroprob

zero-probability, must be in \([0, 1]\).

log, log.p

logical; if TRUE, probabilities/ densities \(p\) are returned as \(\log(p)\).

lower.tail

logical; if TRUE, probabilities are \(P[X <= x]\), otherwise, \(P[X > x]\).

n

number of random values to return

Value

dziinvgauss gives the density, pziinvgauss gives the distribution function, and rziinvgauss generates random deviates.

Details

This implementation of zidinvgauss allows for automatic differentiation with RTMB.

Examples

x <- rziinvgauss(1, 1, 2, 0.5)
d <- dziinvgauss(x, 1, 2, 0.5)
p <- pziinvgauss(x, 1, 2, 0.5)