Skip to contents

Density, distribution function, quantile function, and random generation for the Box–Cox Cole and Green distribution.

Usage

dbccg(x, mu = 1, sigma = 0.1, nu = 1, log = FALSE)

pbccg(q, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)

qbccg(p, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)

rbccg(n, mu = 1, sigma = 0.1, nu = 1)

Arguments

x, q

vector of quantiles

mu

location parameter, must be positive.

sigma

scale parameter, must be positive.

nu

skewness parameter (real).

log, log.p

logical; if TRUE, probabilities/ densities \(p\) are returned as \(\log(p)\).

lower.tail

logical; if TRUE (default), probabilities are \(P[X \le x]\), otherwise \(P[X > x]\).

p

vector of probabilities

n

number of random values to return

Value

dbccg gives the density, pbccg gives the distribution function, qbccg gives the quantile function, and rbccg generates random deviates.

Details

This implementation of dbccg and pbccg allows for automatic differentiation with RTMB while the other functions are imported from gamlss.dist package. See gamlss.dist::BCCG for more details.

References

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Examples

x <- rbccg(5, mu = 10, sigma = 0.2, nu = 0.5)
d <- dbccg(x, mu = 10, sigma = 0.2, nu = 0.5)
p <- pbccg(x, mu = 10, sigma = 0.2, nu = 0.5)
q <- qbccg(p, mu = 10, sigma = 0.2, nu = 0.5)