Zero-truncated Negative Binomial distribution
ztnbinom.Rd
Probability mass function, distribution function, and random generation for the zero-truncated Negative Binomial distribution.
Usage
dztnbinom(x, size, prob, log = FALSE)
pztnbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)
rztnbinom(n, size, prob)
Arguments
- x, q
integer vector of counts
- size
target for number of successful trials, or dispersion parameter (the shape parameter of the gamma mixing distribution). Must be strictly positive, need not be integer.
- prob
probability of success in each trial. 0 < prob <= 1.
- log, log.p
logical; return log-density if TRUE
- lower.tail
logical; if
TRUE
, probabilities are \(P[X \le x]\), otherwise, \(P[X > x]\).- n
number of random values to return.
Value
dztnbinom
gives the probability mass function, pztnbinom
gives the distribution function, and rztnbinom
generates random deviates.
Details
This implementation allows for automatic differentiation with RTMB
.
By definition, this distribution only has support on the positive integers (1, 2, ...). Any zero-truncated distribution is defined as $$P(X=x | X>0) = P(X=x) / (1 - P(X=0)),$$ where \(P(X=x)\) is the probability mass function of the corresponding untruncated distribution.
Examples
set.seed(123)
x <- rztnbinom(1, size = 2, prob = 0.5)
d <- dztnbinom(x, size = 2, prob = 0.5)
p <- pztnbinom(x, size = 2, prob = 0.5)