Skip to contents

Density, distribution function, quantile function, and random generation for the Box–Cox t distribution.

Usage

dbct(x, mu = 5, sigma = 0.1, nu = 1, tau = 2, log = FALSE)

pbct(q, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE)

qbct(p, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE)

rbct(n, mu = 5, sigma = 0.1, nu = 1, tau = 2)

Arguments

x, q

vector of quantiles

mu

location parameter, must be positive.

sigma

scale parameter, must be positive.

nu

skewness parameter (real).

tau

degrees of freedom, must be positive.

log, log.p

logical; if TRUE, probabilities/ densities \(p\) are returned as \(\log(p)\).

lower.tail

logical; if TRUE (default), probabilities are \(P[X \le x]\), otherwise \(P[X > x]\).

p

vector of probabilities

n

number of random values to return

Value

dbct gives the density, pbct gives the distribution function, qbct gives the quantile function, and rbct generates random deviates.

Details

This implementation of dbct and pbct allows for automatic differentiation with RTMB while the other functions are imported from gamlss.dist package. See gamlss.dist::BCT for more details.

References

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Examples

x <- rbct(1, mu = 10, sigma = 0.2, nu = 0.5, tau = 4)
d <- dbct(x, mu = 10, sigma = 0.2, nu = 0.5, tau = 4)
p <- pbct(x, mu = 10, sigma = 0.2, nu = 0.5, tau = 4)
q <- qbct(p, mu = 10, sigma = 0.2, nu = 0.5, tau = 4)