Power Exponential distribution (PE and PE2)
pe.Rd
Density, distribution function, quantile function, and random generation for the Power Exponential distribution (two versions).
Usage
dpe(x, mu = 0, sigma = 1, nu = 2, log = FALSE)
ppe(q, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
qpe(p, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
rpe(n, mu = 0, sigma = 1, nu = 2)
dpe2(x, mu = 0, sigma = 1, nu = 2, log = FALSE)
ppe2(q, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
qpe2(p, mu = 0, sigma = 1, nu = 2, lower.tail = TRUE, log.p = FALSE)
rpe2(n, mu = 0, sigma = 1, nu = 2)
Arguments
- x, q
vector of quantiles
- mu
location parameter
- sigma
scale parameter, must be positive
- nu
shape parameter (real)
- log, log.p
logical; if
TRUE
, probabilities/ densities \(p\) are returned as \(\log(p)\)- lower.tail
logical; if
TRUE
(default), probabilities are \(P[X \le x]\), otherwise \(P[X > x]\)- p
vector of probabilities
- n
number of random values to return
Value
dpe
gives the density, ppe
gives the distribution function, qpe
gives the quantile function, and rpe
generates random deviates.
Details
This implementation of dpe
and dpe2
allows for automatic differentiation with RTMB
while the other functions are imported from gamlss.dist
package.
For PE
, mu
is the mean and sigma
is the standard deviation while this does not hold for PE2
.
See gamlss.dist::PE
for more details.
Examples
# PE
x <- rpe(5, mu = 0, sigma = 1, nu = 2)
d <- dpe(x, mu = 0, sigma = 1, nu = 2)
p <- ppe(x, mu = 0, sigma = 1, nu = 2)
q <- qpe(p, mu = 0, sigma = 1, nu = 2)
# PE2
x <- rpe2(5, mu = 0, sigma = 1, nu = 2)
d <- dpe2(x, mu = 0, sigma = 1, nu = 2)
p <- ppe2(x, mu = 0, sigma = 1, nu = 2)
q <- qpe2(p, mu = 0, sigma = 1, nu = 2)