Skip to contents

Probability mass function, distribution function, quantile function, and random generation for the negative binomial distribution reparameterised in terms of mean and size.

Usage

dnbinom2(x, mu, size, log = FALSE)

pnbinom2(q, mu, size, lower.tail = TRUE, log.p = FALSE)

qnbinom2(p, mu, size, lower.tail = TRUE, log.p = FALSE)

rnbinom2(n, mu, size)

pnbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)

Arguments

x, q

vector of quantiles

mu

mean parameter, must be positive.

size

size parameter, must be positive.

log, log.p

logical; if TRUE, probabilities/ densities \(p\) are returned as \(\log(p)\).

lower.tail

logical; if TRUE, probabilities are \(P[X <= x]\), otherwise, \(P[X > x]\).

p

vector of probabilities

n

number of random values to return.

prob

probability of success in each trial. 0 < prob <= 1.

Value

dnbinom2 gives the density, pnbinom2 gives the distribution function, qnbinom2 gives the quantile function, and rnbinom2 generates random deviates.

Details

This implementation allows for automatic differentiation with RTMB.

pnbinom is an AD-compatible implementation of the standard parameterisation of the CDF, missing from RTMB.

Examples

set.seed(123)
x <- rnbinom2(1, 1, 2)
d <- dnbinom2(x, 1, 2)
p <- pnbinom2(x, 1, 2)
q <- qnbinom2(p, 1, 2)