One-inflated beta distribution
oibeta.RdDensity, distribution function, and random generation for the one-inflated beta distribution.
Usage
doibeta(x, shape1, shape2, oneprob = 0, log = FALSE)
poibeta(q, shape1, shape2, oneprob = 0, lower.tail = TRUE, log.p = FALSE)
roibeta(n, shape1, shape2, oneprob = 0)Arguments
- x, q
vector of quantiles
- shape1, shape2
non-negative shape parameters of the beta distribution
- oneprob
zero-inflation probability between 0 and 1.
- log, log.p
logical; if
TRUE, probabilities/ densities \(p\) are returned as \(\log(p)\).- lower.tail
logical; if
TRUE, probabilities are \(P[X \le x]\), otherwise, \(P[X > x]\).- n
number of random values to return.
Value
doibeta gives the density, poibeta gives the distribution function, and roibeta generates random deviates.
Examples
set.seed(123)
x <- roibeta(1, 2, 2, 0.5)
d <- doibeta(x, 2, 2, 0.5)
p <- poibeta(x, 2, 2, 0.5)