
State space models

Jan-Ole Koslik

This vignette shows how to fit state space models which can be interpreted as generalization of HMMs to
continuous state spaces. Several approaches exist to fitting such models, but Langrock (2011) showed that
very general state space models can be fitted via approximate maximum likelihood estimation, when the
continous state space is finely discretized. Here, we will showcase this approach for a basic stochastic volatily
model, which can be used to describe fincancial markets. In this model the unobserved marked volatility is
described by an AR(1) process:

gt = ϕgt−1 + σηt, ηt ∼ N(0, 1),
with autoregression parameter ϕ < 1 a dispersion parameter σ. We could then model share returns yt as

yt = βϵt exp(gt/2),

where ϵt ∼ N(0, 1) and β > 0 is the baseline standard deviation of the returns (when gt is in equilibrium),
which implies

yt | gt ∼ N(0, (βegt/2)2).

Simulating data from the stochastic volatility model

We start by simulating data from the above specified model:

beta = 2 # baseline standard deviation
phi = 0.95 # AR parameter
sigma = 0.5 # variability of the AR process

n = 1000
set.seed(123)
g = y = rep(NA, n)
g[1] = rnorm(1, 0, sigma / sqrt(1-phiˆ2)) # stationary distribution of AR process
y[1] = stats::rnorm(1, 0, beta*exp(g[1]/2))
conditional distribution of y_1 given underlying volatility
for(t in 2:n){

g[t] = rnorm(1, phi*g[t-1] , sigma) # transition density
y[t] = stats::rnorm(1, 0, beta*exp(g[t]/2))
conditional distribution of y_t given underlying volatility

}

share returns
par(mar = c(5,4,3,4.5)+0.1)
plot(y, type = "l", bty = "n", ylim = c(-40,20), yaxt = "n")
true underlying standard deviation
lines(beta*exp(g)/7 - 40, col = "deepskyblue", lwd = 2)
axis(side=2, at = seq(-20,20,by=5), labels = seq(-20,20,by=5))
axis(side=4, at = seq(0,150,by=75)/7-40, labels = seq(0,150,by=75))
mtext("standard deviation", side=4, line=3, at = -30)

1

0 200 400 600 800 1000

Index

y

−
20

−
10

0
5

10
15

20

0
75

15
0

st
an

da
rd

 d
ev

ia
tio

n

Writing the negative log-likelihood function

This likelihood formulation corresponds to a fine discretization of the continuous state space into the intervals
b with width h and midpoints bstar.

mllk = function(theta.star, y, bm, m){
phi = plogis(theta.star[1])
sigma = exp(theta.star[2])
beta = exp(theta.star[3])
b = seq(-bm, bm, length = m+1) # intervals for midpoint quadrature
h = b[2]-b[1] # interval width
bstar = (b[-1] + b[-(m+1)])/2 # interval midpoints
approximation resulting from midpoint quadrature
Gamma = sapply(bstar, dnorm, mean = phi*bstar, sd = sigma) * h
Gamma = Gamma / rowSums(Gamma) # normalizing out approximation errors
delta = h * dnorm(bstar, 0, sigma/sqrt(1-phiˆ2)) # stationary distribution
approximating state-dependent density based on midpoints
allprobs = t(sapply(y, dnorm, mean = 0, sd = beta * exp(bstar/2)))
return negative for minimization
-forward(delta, Gamma, allprobs)

}

Fitting an SSM to the data

theta.star = c(qlogis(0.95), log(0.3), log(1))
bm = 5 # relevant range of underlying volatility (-5,5)
m = 50 # number of approximating states

2

t1 = Sys.time()
mod = stats::nlm(mllk, theta.star, y = y, bm = bm, m = m)
Sys.time()-t1
#> Time difference of 0.201272 secs

Results

parameter estimates
(phi = plogis(mod$estimate[1]))
#> [1] 0.9305141
(sigma = exp(mod$estimate[2]))
#> [1] 0.4805211
(beta = exp(mod$estimate[3]))
#> [1] 2.50383

decoding states
b = seq(-bm, bm, length = m+1) # intervals for midpoint quadrature
h = b[2]-b[1] # interval width
bstar = (b[-1] + b[-(m+1)])/2 # interval midpoints
Gamma = sapply(bstar, dnorm, mean = phi*bstar, sd = sigma) * h
Gamma = Gamma / rowSums(Gamma) # normalizing out approximation errors
delta = h * dnorm(bstar, 0, sigma/sqrt(1-phiˆ2)) # stationary distribution
approximating state-dependent density based on midpoints
allprobs = t(sapply(y, dnorm, mean = 0, sd = beta * exp(bstar/2)))

probs = stateprobs(delta, Gamma, allprobs)
states = viterbi(delta, Gamma, allprobs)

par(mar = c(5,4,3,4.5)+0.1)
plot(y, type = "l", bty = "n", ylim = c(-50,20), yaxt = "n")
when there are so many states it is not too sensable to only plot the most probable state,
as its probability might still be very small. Generally, we are approximating continuous
distributions, thus it makes sense to plot the entire conditional distribution.
maxprobs = apply(probs, 1, max)
for(t in 1:1000){

colend = round((probs[t,]/(maxprobs[t]*5))*100)
colend[which(colend<10)] = paste0("0", colend[which(colend<10)])
points(rep(t, m), bstar*4-35, col = paste0("#FFA200",colend), pch = 20)

}
we can add the viterbi decoded volatility levels as a "mean"
lines(bstar[states]*4-35)

axis(side=2, at = seq(-20,20,by=5), labels = seq(-20,20,by=5))
axis(side=4, at = seq(-5,5, by = 5)*4-35, labels = seq(-5,5, by = 5))
mtext("g", side=4, line=3, at = -30)

3

0 200 400 600 800 1000

Index

y

−
20

−
10

0
5

10
20

0
5

g

References
Langrock, Roland. 2011. “On Some Special-Purpose Hidden Markov Models.” PhD thesis, University of

Göttingen.

4

	Simulating data from the stochastic volatility model
	Writing the negative log-likelihood function
	Fitting an SSM to the data
	Results
	References

