
Markov-modulated (marked) Poisson processes

Jan-Ole Koslik

The functionalities of LaMa can also be called to fit so-called Markov-modulated Poisson processes.
These are doubly stochastic Poisson point processes where the intensity is directed by an underlying
continuous-time Markov chain. Such processes are useful for modeling arrival times, for example of calls in a
call center, or patients in the hospital. The main difference compared to continuous-time HMMs is that we
explicitely model the arrival times as random-variables, i.e. we assign probabilities to them. A homogeneous
Poisson process is mainly characterized by the fact that the number of arrivals in a fixed time interval is
Poisson distributed with a mean that is proporional to the length of the interval. The waiting times between
arrivals are exponentially distributed. While the latter is not true for non-homogeneous Poisson processes
in general, we can interpret a Markov modulated Poisson process as alternating between homogeneous
Poisson processes, i.e. when the unobserved continuous-time Markov chain stays in a particular state for
some interval, the associated Poisson rate in that interval is homogeneous and state-specific. To learn more
about Poisson processes, see Dobrow (2016).

Example 1: Markov-modulated Poisson processes

Setting parameters

We choose to have a considerably higher rate and shorter stays of the underlying Markov chain in state 2,
i.e. state 2 is bursty.

state-dependent rates
lambda = c(2, 15)
generator matrix of the underlying Markov chain
Q = matrix(c(-0.5,0.5,2,-2), nrow = 2, byrow = TRUE)

Simulating an MMPP

set.seed(123)

k = 200 # number of state switches
trans_times = s = rep(NA, k) # time points where the chain transitions
s[1] = sample(1:2, 1) # initial distribuion c(0.5, 0.5)
exponentially distributed waiting times
trans_times[1] = rexp(1, -Q[s[1],s[1]])
in a fixed interval, the number of arrivals is Pois(lambda * interval_length)
n_arrivals = rpois(1, lambda[s[1]]*trans_times[1])
arrival times within fixed interval are uniformly distributed
arrival_times = runif(n_arrivals, 0, trans_times[1])
for(t in 2:k){

s[t] = c(1,2)[-s[t-1]] # for 2-states, always a state swith when transitioning

1

exponentially distributed waiting times
trans_times[t] = trans_times[t-1] + rexp(1, -Q[s[t], s[t]])
in a fixed interval, the number of arrivals is Pois(lambda * interval_length)
n_arrivals = rpois(1, lambda[s[t]]*(trans_times[t]-trans_times[t-1]))
arrival times within fixed interval are uniformly distributed
arrival_times = c(arrival_times,

runif(n_arrivals, trans_times[t-1], trans_times[t]))
}
arrival_times = sort(arrival_times)

Let’s visualize the simulated MMPP

n = length(arrival_times)
color = c("orange", "deepskyblue")
plot(arrival_times[1:100], rep(0.5,100), type = "h", bty = "n", ylim = c(0,1),

yaxt = "n", xlab = "arrival times", ylab = "")
segments(x0 = c(0,trans_times[1:98]), x1 = trans_times[1:99],

y0 = rep(0,100), y1 = rep(0,100), col = color[s[1:99]], lwd = 4)
legend("top", lwd = 2, col = color, legend = c("state 1", "state 2"), box.lwd = 0)

5 10 15

arrival times

state 1
state 2

What makes the MMPP special compared to a regular Poisson point process is its burstiness when the
Markov chain is in the second state.

2

Writing the negative log-likelihood function

The likelihood of a stationary MMPP for waiting times x1, . . . , xn is (Meier-Hellstern (1987), Langrock,
Borchers, and Skaug (2013))

L(θ) = δ
(n∏

i=1
exp((Q − Λ)xi)Λ

)
1,

where Q is the generator matrix of the continuous-time Markov chain, Λ is a diagonal matrix of state-
dependent Poisson intensities, δ is the stationary distribution of the continuous-time Markov chain, and 1 is
a column vector of ones. For more details on continuous-time Markov chains, see the vignette continuous-
time HMMs or also Dobrow (2016). We can easily calculate the log of the above expression using the
standard implementation of the general forward algorithm forward_g() when choosing the first matrix of
state-dependent densities to be the identity (i.e.) the first row of the allprobs matrix to be one and all
other matrices of state-dependent density matrices to be Λ.

mllk = function(theta.star, timediff, N=2){
lambda = exp(theta.star[1:N]) # state specific rates
Q = diag(N) # generator matrix
Q[!Q] = exp(theta.star[N+1:(N*(N-1))])
diag(Q) = 0
diag(Q) = -rowSums(Q)
Qube = LaMa::tpm_cont(Q-diag(lambda), timediff) # exp((Q-Lambda)*deltat)
allprobs = matrix(lambda, nrow = length(timediff+1), ncol = N, byrow = T)
allprobs[1,] = 1
delta = solve(t(Q+1), rep(1,N), tol = 1e-20)
-LaMa::forward_g(delta, Qube, allprobs)

}

Fitting an MMPP to the data

theta.star = log(c(2, 15, # lambda
2, 0.5)) # off-diagonals of Q

timediff = diff(arrival_times)

t1 = Sys.time()
mod = nlm(mllk, theta.star, timediff=timediff, stepmax = 10)
we often need the stepmax, as the matrix exponential can be numerically unstable
Sys.time()-t1
#> Time difference of 0.07216215 secs

Results

exp(mod$estimate)
#> [1] 1.9496891 15.0831215 1.8998849 0.4003955

Example 2: Markov-modulated marked Poisson processes

Such processes can also carry additional information, so called marks, at every arrival time when we also
observe the realization of a different random variable that only depends on the underlying states of the

3

continuous-time Markov chain. For example for patient arrivals in the hospital we could observe a biomarker
at every arrival time. Information on the underlying health status is then present in both, the arrival times
(because sick patients visit more often) and the biomarkers.

state-dependent rates
lambda = c(1, 5, 20)
generator matrix of the underlying Markov chain
Q = matrix(c(-0.5,0.3,0.2,

0.7, -1, 0.3,
1 ,1,-2), nrow = 3, byrow = TRUE)

parmeters for distributions of state-dependent marks
(here normally distributed)
mu = c(-5, 0, 5)
sigma = c(2, 1, 2)

color = c("orange", "deepskyblue", "seagreen2")
curve(dnorm(x, 0, 1), xlim = c(-10,10), bty = "n", lwd = 2, col = color[2],

n = 200, ylab = "density", xlab = "mark")
curve(dnorm(x, -5, 2), add = TRUE, lwd = 2, col = color[1], n = 200)
curve(dnorm(x, 5, 2), add = TRUE, lwd = 2, col = color[3], n = 200)

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

mark

de
ns

ity

Simulating an MMMPP

We now show how to simulate an MMMPP and additionally how to generalize to more than two hidden
states.

set.seed(123)
k = 200 # number of state switches
trans_times = s = rep(NA, k) # time points where the chain transitions

4

s[1] = sample(1:3, 1) # initial distribuion uniformly
exponentially distributed waiting times
trans_times[1] = rexp(1, -Q[s[1],s[1]])
in a fixed interval, the number of arrivals is Pois(lambda * interval_length)
n_arrivals = rpois(1, lambda[s[1]]*trans_times[1])
arrival times within fixed interval are uniformly distributed
arrival_times = runif(n_arrivals, 0, trans_times[1])
marks are iid in interval, given underlying state
marks = rnorm(n_arrivals, mu[s[1]], sigma[s[1]])

for(t in 2:k){
off-diagonal elements of the s[t-1] row of Q divided by the diagonal element
give the probabilites of the next state
s[t] = sample(c(1:3)[-s[t-1]], 1, prob = Q[s[t-1],-s[t-1]]/-Q[s[t-1],s[t-1]])
exponentially distributed waiting times
trans_times[t] = trans_times[t-1] + rexp(1, -Q[s[t],s[t]])
in a fixed interval, the number of arrivals is Pois(lambda * interval_length)
n_arrivals = rpois(1, lambda[s[t]]*(trans_times[t]-trans_times[t-1]))
arrival times within fixed interval are uniformly distributed
arrival_times = c(arrival_times,

runif(n_arrivals, trans_times[t-1], trans_times[t]))
marks are iid in interval, given underlying state
marks = c(marks, rnorm(n_arrivals, mu[s[t]], sigma[s[t]]))

}
arrival_times = sort(arrival_times)

Let’s visualize the simulated MMMPP

n = length(arrival_times)
plot(arrival_times[1:100], marks[1:100], pch = 16, bty = "n",

ylim = c(-9,9), xlab = "arrival times", ylab = "marks")
segments(x0 = c(0,trans_times[1:98]), x1 = trans_times[1:99],

y0 = rep(-9,100), y1 = rep(-9,100), col = color[s[1:99]], lwd = 4)
legend("topright", lwd = 2, col = color,

legend = c("state 1", "state 2", "state 3"), box.lwd = 0)

5

0 5 10 15 20 25

−
5

0
5

arrival times

m
ar

ks

state 1
state 2
state 3

Writing the negative log-likelihood function

The likelihood of a stationary MMMPP for waiting times x1, . . . , xn between marks y0, y1, . . . , yn only
changes slightly from the MMPP likelihood, as we include the matrix of state-specific densities (Lu (2012),
Mews et al. (2023)):

L(θ) = δP (y0)
(n∏

i=1
exp((Q − Λ)xi)ΛP (yi)

)
1,

where Q, Λ and δ are as above and P (yi) is a diagonal matrix with state-dependent densites for the ob-
servation at time ti. We can again easily calculate the log of the above expression using the standard
implementation of the general forward algorithm forward_g() when first calculating the allprobs matrix
with state-dependent densities for the marks (as usual for HMMs) and then multiplying each row except the
first one element-wise with the state-dependent rates.

mllk = function(theta.star, y, timediff, N){
lambda = exp(theta.star[1:N]) # state specific rates
mu = theta.star[N+1:N]
sigma = exp(theta.star[2*N+1:N])
Q = diag(N) # generator matrix
Q[!Q] = exp(theta.star[3*N+1:(N*(N-1))])
diag(Q) = 0
diag(Q) = -rowSums(Q)
delta = solve(t(Q+1), rep(1,N), tol = 1e-20)
Qube = LaMa::tpm_cont(Q-diag(lambda), timediff) # exp((Q-Lambda)*deltat)
allprobs = matrix(1, length(y), N)
for(j in 1:N){

allprobs[,j] = dnorm(y, mu[j], sigma[j])
}
allprobs[-1,] = allprobs[-1,] * matrix(lambda, length(y)-1, N, byrow = T)

6

-LaMa::forward_g(delta, Qube, allprobs)
}

Fitting an MMPP to the data

theta.star = c(log(c(1, 5, 20)), # lambda
-5, 0, 5, # mu

log(c(2, 1, 2)), # sigma
log(c(0.7, 1, 0.3, 1, 0.2, 0.3))) # Q

timediff = diff(arrival_times)
t1 = Sys.time()
mod2 = nlm(mllk, theta.star, y = marks, timediff=timediff, N=3, stepmax = 5)
Sys.time()-t1
#> Time difference of 0.5065761 secs

Results

N = 3
round(exp(mod2$estimate[1:N]),2)
#> [1] 0.96 4.86 19.50
mu
round(mod2$estimate[N+1:N], 2)
#> [1] -5.19 -0.09 4.81
sigma
round(exp(mod2$estimate[2*N+1:N]), 2)
#> [1] 1.79 0.96 2.01
Q = diag(N)
Q[!Q] = exp(mod2$estimate[3*N+1:(N*(N-1))])
diag(Q) = 0
diag(Q) = -rowSums(Q)
round(Q, 3)
#> [,1] [,2] [,3]
#> [1,] -0.591 0.279 0.312
#> [2,] 0.926 -1.180 0.254
#> [3,] 1.193 1.210 -2.403

References
Dobrow, Robert P. 2016. Introduction to Stochastic Processes with r. John Wiley & Sons.
Langrock, Roland, David L Borchers, and Hans J Skaug. 2013. “Markov-Modulated Nonhomogeneous

Poisson Processes for Modeling Detections in Surveys of Marine Mammal Abundance.” Journal of the
American Statistical Association 108 (503): 840–51.

Lu, Shaochuan. 2012. “Markov Modulated Poisson Process Associated with State-Dependent Marks and Its
Applications to the Deep Earthquakes.” Annals of the Institute of Statistical Mathematics 64: 87–106.

Meier-Hellstern, Kathleen S. 1987. “A Fitting Algorithm for Markov-Modulated Poisson Processes Having
Two Arrival Rates.” European Journal of Operational Research 29 (3): 370–77.

Mews, Sina, Bastian Surmann, Lena Hasemann, and Svenja Elkenkamp. 2023. “Markov-Modulated Marked
Poisson Processes for Modeling Disease Dynamics Based on Medical Claims Data.” Statistics in Medicine.

7

	Example 1: Markov-modulated Poisson processes
	Setting parameters
	Simulating an MMPP
	Writing the negative log-likelihood function
	Fitting an MMPP to the data
	Results

	Example 2: Markov-modulated marked Poisson processes
	Simulating an MMMPP
	Writing the negative log-likelihood function
	Fitting an MMPP to the data
	Results

	References

