Markov-modulated (marked) Poisson processes

Jan-Ole Koslik

The functionalities of LaMa can also be called to fit so-called Markov-modulated Poisson processes. These are doubly stochastic Poisson point processes where the intensity is directed by an underlying continuous-time Markov chain. Such processes are useful for modeling arrival times, for example of calls in a call center, or patients in the hospital. The main difference compared to continuous-time HMMs is that we explicitly model the arrival times as random-variables, i.e. we assign probabilities to them. A homogeneous Poisson process is mainly characterized by the fact that the number of arrivals in a fixed time interval is Poisson distributed with a mean that is proportional to the length of the interval. The waiting times between arrivals are exponentially distributed. While the latter is not true for non-homogeneous Poisson processes in general, we can interpret a Markov modulated Poisson process as alternating between homogeneous Poisson processes, i.e. when the unobserved continuous-time Markov chain stays in a particular state for some interval, the associated Poisson rate in that interval is homogeneous and state-specific. To learn more about Poisson processes, see Dobrow (2016).

Example 1: Markov-modulated Poisson processes

Setting parameters

We choose to have a considerably higher rate and shorter stays of the underlying Markov chain in state 2, i.e. state 2 is **bursty**.

```
# state-dependent rates
lambda = c(2, 15)
# generator matrix of the underlying Markov chain
Q = matrix(c(-0.5,0.5,2,-2), nrow = 2, byrow = TRUE)
```

```
Simulating an MMPP
```

set.seed(123)

```
k = 200 # number of state switches
trans_times = s = rep(NA, k) # time points where the chain transitions
s[1] = sample(1:2, 1) # initial distribuion c(0.5, 0.5)
# exponentially distributed waiting times
trans_times[1] = rexp(1, -Q[s[1],s[1]])
# in a fixed interval, the number of arrivals is Pois(lambda * interval_length)
n_arrivals = rpois(1, lambda[s[1]]*trans_times[1])
# arrival times within fixed interval are uniformly distributed
arrival_times = runif(n_arrivals, 0, trans_times[1])
for(t in 2:k){
    s[t] = c(1,2)[-s[t-1]] # for 2-states, always a state swith when transitioning
```

Let's visualize the simulated MMPP

What makes the MMPP special compared to a regular Poisson point process is its **burstiness** when the Markov chain is in the second state.

Writing the negative log-likelihood function

The likelihood of a stationary MMPP for waiting times x_1, \ldots, x_n is (Meier-Hellstern (1987), Langrock, Borchers, and Skaug (2013))

$$L(\theta) = \delta \left(\prod_{i=1}^{n} \exp((Q - \Lambda)x_i)\Lambda\right) 1$$

where Q is the generator matrix of the continuous-time Markov chain, Λ is a diagonal matrix of statedependent Poisson intensities, δ is the stationary distribution of the continuous-time Markov chain, and 1 is a column vector of ones. For more details on continuous-time Markov chains, see the vignette *continuoustime HMMs* or also Dobrow (2016). We can easily calculate the log of the above expression using the standard implementation of the general forward algorithm **forward_g()** when choosing the first matrix of state-dependent densities to be the identity (i.e.) the first row of the **allprobs** matrix to be one and all other matrices of state-dependent density matrices to be Λ .

```
mllk = function(theta.star, timediff, N=2){
  lambda = exp(theta.star[1:N]) # state specific rates
  Q = diag(N) # generator matrix
  Q[!Q] = exp(theta.star[N+1:(N*(N-1))])
  diag(Q) = 0
  diag(Q) = -rowSums(Q)
  Qube = LaMa::tpm_cont(Q-diag(lambda), timediff) # exp((Q-Lambda)*deltat)
  allprobs = matrix(lambda, nrow = length(timediff+1), ncol = N, byrow = T)
  allprobs[1,] = 1
  delta = solve(t(Q+1), rep(1,N), tol = 1e-20)
  -LaMa::forward_g(delta, Qube, allprobs)
}
```

Fitting an MMPP to the data

Results

```
exp(mod$estimate)
#> [1] 1.9496891 15.0831215 1.8998849 0.4003955
```

Example 2: Markov-modulated marked Poisson processes

Such processes can also carry additional information, so called **marks**, at every arrival time when we also observe the realization of a different random variable that only depends on the underlying states of the

continuous-time Markov chain. For example for patient arrivals in the hospital we could observe a biomarker at every arrival time. Information on the underlying health status is then present in both, the arrival times (because sick patients visit more often) and the biomarkers.

Simulating an MMMPP

We now show how to simulate an MMMPP and additionally how to generalize to more than two hidden states.

```
set.seed(123)
k = 200 # number of state switches
trans_times = s = rep(NA, k) # time points where the chain transitions
```

```
s[1] = sample(1:3, 1) # initial distribution uniformly
# exponentially distributed waiting times
trans_times[1] = rexp(1, -Q[s[1], s[1]])
# in a fixed interval, the number of arrivals is Pois(lambda * interval_length)
n_arrivals = rpois(1, lambda[s[1]]*trans_times[1])
# arrival times within fixed interval are uniformly distributed
arrival_times = runif(n_arrivals, 0, trans_times[1])
# marks are iid in interval, given underlying state
marks = rnorm(n_arrivals, mu[s[1]], sigma[s[1]])
for(t in 2:k){
  # off-diagonal elements of the s[t-1] row of Q divided by the diagonal element
  # give the probabilites of the next state
  s[t] = sample(c(1:3)[-s[t-1]], 1, prob = Q[s[t-1],-s[t-1]]/-Q[s[t-1],s[t-1]])
  # exponentially distributed waiting times
 trans_times[t] = trans_times[t-1] + rexp(1, -Q[s[t],s[t]])
  # in a fixed interval, the number of arrivals is Pois(lambda * interval_length)
  n_arrivals = rpois(1, lambda[s[t]]*(trans_times[t]-trans_times[t-1]))
  # arrival times within fixed interval are uniformly distributed
  arrival_times = c(arrival_times,
                    runif(n_arrivals, trans_times[t-1], trans_times[t]))
  # marks are iid in interval, given underlying state
 marks = c(marks, rnorm(n_arrivals, mu[s[t]], sigma[s[t]]))
}
arrival_times = sort(arrival_times)
```

Let's visualize the simulated MMMPP

```
n = length(arrival_times)
plot(arrival_times[1:100], marks[1:100], pch = 16, bty = "n",
    ylim = c(-9,9), xlab = "arrival times", ylab = "marks")
segments(x0 = c(0,trans_times[1:98]), x1 = trans_times[1:99],
    y0 = rep(-9,100), y1 = rep(-9,100), col = color[s[1:99]], lwd = 4)
legend("topright", lwd = 2, col = color,
    legend = c("state 1", "state 2", "state 3"), box.lwd = 0)
```


Writing the negative log-likelihood function

The likelihood of a stationary MMMPP for waiting times x_1, \ldots, x_n between marks y_0, y_1, \ldots, y_n only changes slightly from the MMPP likelihood, as we include the matrix of state-specific densities (Lu (2012), Mews et al. (2023)):

$$L(\theta) = \delta P(y_0) \Big(\prod_{i=1}^n \exp((Q - \Lambda) x_i) \Lambda P(y_i) \Big) 1,$$

where Q, Λ and δ are as above and $P(y_i)$ is a diagonal matrix with state-dependent densites for the observation at time t_i . We can again easily calculate the log of the above expression using the standard implementation of the general forward algorithm forward_g() when first calculating the allprobs matrix with state-dependent densities for the marks (as usual for HMMs) and then multiplying each row except the first one element-wise with the state-dependent rates.

```
mllk = function(theta.star, y, timediff, N){
  lambda = exp(theta.star[1:N]) # state specific rates
  mu = theta.star[N+1:N]
  sigma = exp(theta.star[2*N+1:N])
  Q = diag(N) # generator matrix
  Q[!Q] = exp(theta.star[3*N+1:(N*(N-1))])
  diag(Q) = 0
  diag(Q) = -rowSums(Q)
  delta = solve(t(Q+1), rep(1,N), tol = 1e-20)
  Qube = LaMa::tpm_cont(Q-diag(lambda), timediff) # exp((Q-Lambda)*deltat)
  allprobs = matrix(1, length(y), N)
  for(j in 1:N){
    allprobs[,j] = dnorm(y, mu[j], sigma[j])
  }
  allprobs[-1,] = allprobs[-1,] * matrix(lambda, length(y)-1, N, byrow = T)
```

```
-LaMa::forward_g(delta, Qube, allprobs)
}
```

Fitting an MMPP to the data

Results

```
N = 3
round(exp(mod2$estimate[1:N]),2)
#> [1] 0.96 4.86 19.50
# mu
round(mod2$estimate[N+1:N], 2)
#> [1] -5.19 -0.09 4.81
# sigma
round(exp(mod2$estimate[2*N+1:N]), 2)
#> [1] 1.79 0.96 2.01
Q = diag(N)
Q[!Q] = exp(mod2$estimate[3*N+1:(N*(N-1))])
diag(Q) = 0
diag(Q) = -rowSums(Q)
round(Q, 3)
#>
          [,1]
               [,2]
                        [,3]
#> [1,] -0.591 0.279 0.312
#> [2,] 0.926 -1.180 0.254
#> [3,] 1.193 1.210 -2.403
```

References

Dobrow, Robert P. 2016. Introduction to Stochastic Processes with r. John Wiley & Sons.

- Langrock, Roland, David L Borchers, and Hans J Skaug. 2013. "Markov-Modulated Nonhomogeneous Poisson Processes for Modeling Detections in Surveys of Marine Mammal Abundance." Journal of the American Statistical Association 108 (503): 840–51.
- Lu, Shaochuan. 2012. "Markov Modulated Poisson Process Associated with State-Dependent Marks and Its Applications to the Deep Earthquakes." Annals of the Institute of Statistical Mathematics 64: 87–106.
- Meier-Hellstern, Kathleen S. 1987. "A Fitting Algorithm for Markov-Modulated Poisson Processes Having Two Arrival Rates." *European Journal of Operational Research* 29 (3): 370–77.
- Mews, Sina, Bastian Surmann, Lena Hasemann, and Svenja Elkenkamp. 2023. "Markov-Modulated Marked Poisson Processes for Modeling Disease Dynamics Based on Medical Claims Data." *Statistics in Medicine*.