
Introduction to LaMa

Jan-Ole Koslik

The R package LaMa provides convenient R wrapper functions for the forward algorithm that can be
used to fit a wide range of latent Markov models like hidden Markov models (HMMs), hidden
semi-Markov models (HSMMs) and state space models (SSMs) via direct numerical maximum
likelihood estimation. To make writing bespoke likelihood functions faster and more convenient, it also
includes many auxiliary functions that to be used in the likelihood computation.

The three main families of functions therefore are forward, tpm and stationary and we showcasse the
simplest versions in the following introductory example.

Introductory example: Homogeneous HMM

In this vignette, we start from the most simple HMM we can think of. Such a basic N-state HMM is a
doubly stochastic process in discrete time, i.e. in such a model observations are generated by one of N possible
distributions fj(xt), j = 1, . . . N with an unobserved N-state Markov chain selecting which distribution
is active at any given time point. Therefore, HMMs can be interpreted as correlated mixture models and
are very popular accross a wide range of disciplines like ecology, sports, finance where time-series data with
underlying sequential dependencies are to be analyzed. They statements above already hint at the two main
assumptions in such a model, namely

1. f(st | st−1, st−2, . . . , s1) = f(st | st−1) (Markov assumption)
2. f(xt | x1, . . . , xt−1, xt−1, xT , s1, . . . , sT) = f(xt | st) (conditional independence assumption).

The hidden state process is described by a Markov chain, as such a stochastic process can easily be charac-
terized by its initial distribution

δ(1) = (Pr(S1 = 1), . . . , Pr(S1 = N))

and the one-step transition probabilities

γij = Pr(St = j | St−1 = i), i, j = 1, . . . , N

which are typically summarized in the so-called transition probability matrix (t.p.m.)

Γ = (γij)i,j=1,...,N

where row i is the conditional one-step ahead distribution of the state process given that the current state
is i. For HMMs with homogeneous transition probabilities, we often assume stationarity of the underly-
ing Markov chain, as well-behaved Markov chains converge to a unique stationary distribution. When we
e.g. observe an animial and model its behavioral states by a Markov chain, it is reasonable to assume that the
chain has been running for a long time prior to our observation and thus already converged to its stationary
distribution. This distribution (which we call δ) can be computed by solving the system of equations

δΓ = δ, s.t.
N∑

j=1
δj = 1,

1

which is implemented in the function stationary(). For stationary HMMs, we then replace the initial
distribution δ(1) by this stationary distribution.

For the conditional distributions of the observations fj(xt), a typical choice would be some kind of parametric
family like normal or gamma distributions with state-specific means and standard deviations. For a more
exhaustive description of such models see Zucchini, MacDonald, and Langrock (2016).

Generating data from a 2-state HMM

Here we can already use stationary() to compute the stationary distribution.

parameters
mu = c(0, 6)
sigma = c(2, 4)
Gamma = matrix(c(0.95, 0.05, 0.15, 0.85), nrow = 2, byrow = TRUE)
delta = stationary(Gamma) # stationary HMM

simulation
n = 1000
set.seed(123)
s = x = rep(NA, n)
s[1] = sample(1:2, 1, prob = delta)
x[1] = rnorm(1, mu[s[1]], sigma[s[1]])
for(t in 2:n){

we draw the next state conditional on the last one
s[t] = sample(1:2, 1, prob = Gamma[s[t-1],])
we draw the observation conditional on the current state
x[t] = rnorm(1, mu[s[t]], sigma[s[t]])

}

color = c("orange", "deepskyblue")
plot(x[1:200], bty = "n", pch = 20, ylab = "x",

col = color[s[1:200]])

0 50 100 150 200

−
5

0
5

10
15

Index

x

2

Writing the negative log-likelihood function

Inference for HMMs is more difficult compared to e.g. regression modeling, as the observations are not
independent. We would like to estimate model parameters via maximum likelihood estimation, due to the
nice properties possessed by the maximum likelihood estimator. However, computing the HMM likelihood
for observed data points x1, . . . , xT is not a trivial task, as we do not observe the underlying states. We
thus need to sum out all possible state sequences which would be infeasible for general state processes. We
can, however, exploit the Markov property and thus calculate the likelihood recursively as a matrix product
using the so-called forward algorithm. In closed form, the HMM likelihood then becomes

L(θ) = δ(1)P (x1)ΓP (x2)Γ . . . ΓP (xT)1t,

where δ(1) and Γ are as defined above, P (xt) is a diagonal matrix with state-dependent densities or probability
mass functions fj(xt) = f(xt | St = j) on its diagonal and 1 is a row vector of ones with length N . All model
parameters are here summarized in the vector θ. Being able to evaluate the likelihood function, it can be
numerically maximized by popular optimizers like nlm() or optim().

The algorithm explained above suffers from numerical underflow and for T only moderately large the like-
lihood is rounded to zero. Thus, one can use a scaling strategy, detailed by Zucchini, MacDonald, and
Langrock (2016), to avoid this and calculate the log-likelihood recursively. This version of the forward al-
gorithm is implemented in LaMa and written in C++. For HMMs we often need to constrain the domains
of several of the model parameters in θ (i.e. positive standard deviations or a transition probability matrix
with elements between 0 and 1 and rows that sum to one). One could now resort to contraint numerical
optimziation but in practice one usually maximizes the likelihood w.r.t. a transformed version (to the real
number line) of the model parameters by using suitable invertible and differenentiable link functions, which
we denote here as θ∗ (also in the code). For example we use the log-link for parameters that need to be
strictly positive and the multinomial logistic link for the transition probability matrix. While the former
can easily be coded by hand, the latter is implemented by the functions tpm() and tpm_g() for convenience
and computational speed. For efficiency, it is also advisable to evaluate the state-dependent densities (or
probability mass functions) vectorized outside the recursive forward algorithm. This results in a matrix
containing the state-dependent likelihoods for each data point conditioned on each state (i.e. of dimension
c(n,N)) which, throughout the package, we call the allprobs matrix.

In this example, within the negative log-likelihood function we build the homogeneous transition proba-
bility matrix using the tpm() function and compute the stationary distribution of the Markov chain using
stationary(). We then build the allprobs matrix and calculate the log-likelihood using forward() in the
last line. It is returned negative such that the function can be numerically minimized by e.g. nlm().

mllk = function(theta.star, x){
parameter transformations for unconstraint optimization
Gamma = LaMa::tpm(theta.star[1:2])
delta = LaMa::stationary(Gamma) # stationary HMM
mu = theta.star[3:4]
sigma = exp(theta.star[5:6])
calculate all state-dependent probabilities outside the forward algorithm
allprobs = matrix(1, length(x), 2)
for(j in 1:2){ allprobs[,j] = stats::dnorm(x, mu[j], sigma[j]) }
return negative for minimization
-LaMa::forward(delta, Gamma, allprobs)

}

3

Fitting an HMM to the data

theta.star = c(-1,-1,1,4,log(1),log(3))
initial transformed parameters: not chosen too well
s = Sys.time()
mod = nlm(mllk, theta.star, x = x)
Sys.time()-s
#> Time difference of 0.01743007 secs

We see that implementation of the forward algorithm in C++ leads to really fast estimation speeds.

Visualizing results

Again, we use tpm() and stationary() to tranform the unconstraint parameters to working parameters.

transform parameters to working
Gamma = tpm(mod$estimate[1:2])
delta = stationary(Gamma) # stationary HMM
mu = mod$estimate[3:4]
sigma = exp(mod$estimate[5:6])

hist(x, prob = TRUE, bor = "white", breaks = 40, main = "")
curve(delta[1]*dnorm(x, mu[1], sigma[1]), add = TRUE, lwd = 2, col = "orange", n=500)
curve(delta[2]*dnorm(x, mu[2], sigma[2]), add = TRUE, lwd = 2, col = "deepskyblue", n=500)
curve(delta[1]*dnorm(x, mu[1], sigma[1])+delta[2]*dnorm(x, mu[2], sigma[2]),

add = TRUE, lwd = 2, lty = "dashed", n=500)
legend("topright", col = c(color, "black"), lwd = 2, bty = "n",

lty = c(1,1,2), legend = c("state 1", "state 2", "marginal"))

x

D
en

si
ty

−5 0 5 10 15

0.
00

0.
05

0.
10

0.
15

state 1
state 2
marginal

We can also decode the most probable state sequence with the viterbi() function, when first computing
the allprobs matrix:

4

allprobs = matrix(1, length(x), 2)
for(j in 1:2){ allprobs[,j] = dnorm(x, mu[j], sigma[j]) }

states = viterbi(delta, Gamma, allprobs)

plot(x, pch = 20, bty = "n", col = color[states])
legend("topright", pch = 20, legend = c("state 1", "state 2"),

col = color, box.lwd = 0)

0 200 400 600 800 1000

−
5

0
5

10
15

Index

x

state 1
state 2

References
Zucchini, Walter, Iain L. MacDonald, and Roland Langrock. 2016. Hidden Markov Models for Time Series:

An Introduction Using R. Boca Raton: Chapman & Hall/CRC.

5

	Introductory example: Homogeneous HMM
	Generating data from a 2-state HMM
	Writing the negative log-likelihood function
	Fitting an HMM to the data
	Visualizing results

	References

