
Inhomogeneous HMMs

Jan-Ole Koslik

This vignette explains how to fit inhomogeneous HMMs, i.e. models that depend on external covariates. Such
inhomogeneity in HMMs can result from covariates affecting the transition probabilities of the underlying
Markov chain, or covariates affecting the state-dependent distributions, which would then be called Markov-
switching regression. We will begin with effects in the state process

Covariate effects in the state process

If covariates are affecting the transition probabilities, this means that we model the transition probability
matrix as a function of those external covariates. Let zt be a vector of covariates of length p + 1 for
t = 1, . . . , T , where the first entry is always equal to 1 to include an intercept. Moreover, let β be a vector
of regression parameters, also of length p + 1. We can now model all off-diagonal elements of the transition
probability matrix by first considering the linear predictors

η
(t)
ij = β

′

ijzt,

for t = 1, . . . , T . As the transition probabilities need to be in lie in the interval (0, 1) and each row of the
transition matrix needs to sum to one, we obtain the transition probabilities via the inverse multinomial
logistic link as

Pr(St = j | St−1 = i) = γ
(t)
ij =

exp(η(t)
ij )∑N

k=1 exp(η(t)
ik )

,

where ηii is set to zero for i = 1, . . . , N for identifiability, where N is the number of hidden states. The
function tpm_g() conducts this calculation for all elements of the t.p.m. and all time points efficiently in
C++.

At this point we want to point out that the definition of the transition probabilities is not necessarily unique.
Indeed for data points at times 1, . . . , T we only need T − 1 transition probability matrices. The definition
above means that the transition probability between t − 1 and t depends on the covariate values at time
point t, but we could also have defined

Pr(St+1 = j | St = i) = γ
(t)
ij .

We point this out very clearly here, as for HMMs there is no established convention, so this choice can be
made by users and can be important when the exact timing of the covariate effect is relevant. In LaMa this
comes down to either passing the design matrix excluding its first or last row to tpm_g(), where we use
the first option in this vignette. If you forget to exclude the first or the last row of the design matrix when
calculating all transition matrices, and pass an array of dimension c(N,N,T) to forward_g() for likelihood
evaluation, the function will revert to the first option by just ignoring the first slice of the array.

Setting parameters for simulation

We begin by setting parameters to simulate data from an inhomogeneous HMM. In this case we use normal
state-dependent distributions. The covariate effects for the state process are fully specified by a parameter
matrix of dimension c(N*(N-1), p+1). By default the function tpm_g() will fill the off-diagonal elements
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of each transition matrix by column, which can be changed by setting byrow = TRUE. The latter is useful,
as popular HMM packages like moveHMM or momentuHMM return the parameter matrix such that the t.p.m.
needs to be filled by row.

# parameters
mu = c(5, 20)
sigma = c(4, 5)

beta = matrix(c(-2, -2, # intercepts
-1, 0.5, # linear effects
0.25, -0.25), # quadratic effects

nrow = 2)

n = 1000
set.seed(123)
z = rnorm(n) # in practice there will be n covariate values.
# However, we only have n-1 transitions, thererfore we only need n-1 values:
Z = cbind(z, zˆ2) # quadratic effect of z
Gamma = tpm_g(Z = Z[-1,], beta) # of dimension c(2, 2, n-1)
delta = c(0.5, 0.5) # non-stationary initial distribution

color = c("orange", "deepskyblue")

par(mfrow = c(1,2))
zseq = seq(-2,2,by = 0.01)
Gamma_seq = tpm_g(Z = cbind(zseq, zseqˆ2), beta)
plot(zseq, Gamma_seq[1,2,], type = "l", lwd = 3, bty = "n", ylim = c(0,1),

xlab = "z", ylab = "gamma_12", col = color[1])
plot(zseq, Gamma_seq[2,1,], type = "l", lwd = 3, bty = "n", ylim = c(0,1),

xlab = "z", ylab = "gamma_21", col = color[2])
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Delta = matrix(nrow = length(zseq), ncol = 2)
for(i in 1:length(zseq)){ Delta[i,] = stationary(Gamma_seq[,,i]) }

par(mfrow = c(1,1))
plot(zseq, Delta[,1], type = "l", lwd = 3, bty = "n", ylim = c(0,1), xlab = "z",

ylab = "Pr(state 1)", col = color[1])
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Simulating data

s = x = rep(NA, n)
s[1] = sample(1:2, 1, prob = delta)
x[1] = rnorm(1, mu[s[1]], sigma[s[1]])
for(t in 2:n){

s[t] = sample(1:2, 1, prob = Gamma[s[t-1],,t-1])
x[t] = rnorm(1, mu[s[t]], sigma[s[t]])

}

plot(x[1:200], bty = "n", pch = 20, ylab = "x",
col = c(color[1], color[2])[s[1:200]])
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Parametric modeling of the transition probabilities

We begin by modeling the transition probabilities parametrically, where we have a paramter for the intercept,
the linear effect and the quadratic effect for each off-diagonal element of the t.p.m.

Writing the negative log-likelihood function

Here we specify the likelihood function and pretend we know the polynomial degree of the effect of z on the
transition probabilities.

mllk = function(theta.star, x, Z){
beta = matrix(theta.star[1:6], nrow = 2) # matrix of coefficients
Gamma = tpm_g(Z[-1,], beta) # excluding the first covariate value -> n-1 tpms
delta = c(1, exp(theta.star[7]))
delta = delta / sum(delta)
mu = theta.star[8:9]
sigma = exp(theta.star[10:11])
# calculate all state-dependent probabilities
allprobs = matrix(1, length(x), 2)
for(j in 1:2){ allprobs[,j] = dnorm(x, mu[j], sigma[j]) }
# return negative for minimization
-forward_g(delta, Gamma, allprobs)

}

Fitting an HMM to the data

theta.star = c(-2, -2, rep(0,4), # initializing with homogeneous tpm
0, # starting value for initial distribution
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4, 14 ,log(3),log(5)) # starting values state-dependent process
t1 = Sys.time()
mod = nlm(mllk, theta.star, x = x, Z = Z)
Sys.time()-t1
#> Time difference of 0.216336 secs

Really fast!

Visualizing results

Again, we use tpm_g() and stationary() to tranform the parameters.

# transform parameters to working
beta_hat = matrix(mod$estimate[1:6], nrow = 2)
Gamma_hat = tpm_g(Z = Z[-1,], beta_hat)
delta_hat = c(1, exp(mod$estimate[7]))
delta_hat = delta_hat / sum(delta_hat)
mu_hat = mod$estimate[8:9]
sigma_hat = exp(mod$estimate[10:11])

# we calculate the average state distribution overall all covariate values
zseq = seq(-2, 2, by = 0.01)
Gamma_seq = tpm_g(Z = cbind(zseq, zseqˆ2), beta_hat)
Prob = matrix(nrow = length(zseq), ncol = 2)
for(i in 1:length(zseq)){ Prob[i,] = stationary(Gamma_seq[,,i]) }
prob = apply(Prob, 2, mean)

par(mfrow = c(1,1))
hist(x, prob = TRUE, bor = "white", breaks = 20, main = "")
curve(prob[1]*dnorm(x, mu_hat[1], sigma_hat[1]), add = TRUE, lwd = 3,

col = color[1], n=500)
curve(prob[2]*dnorm(x, mu_hat[2], sigma_hat[2]), add = TRUE, lwd = 3,

col = color[2], n=500)
curve(prob[1]*dnorm(x, mu_hat[1], sigma_hat[1])+

prob[2]*dnorm(x, mu[2], sigma_hat[2]),
add = TRUE, lwd = 3, lty = "dashed", n = 500)

legend("topright", col = c(color[1], color[2], "black"), lwd = 3, bty = "n",
lty = c(1,1,2), legend = c("state 1", "state 2", "marginal"))
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par(mfrow = c(1,2))
plot(zseq, Gamma_seq[1,2,], type = "l", lwd = 3, bty = "n", ylim = c(0,1),

xlab = "z", ylab = "gamma_12_hat", col = color[1])
plot(zseq, Gamma_seq[2,1,], type = "l", lwd = 3, bty = "n", ylim = c(0,1),

xlab = "z", ylab = "gamma_21_hat", col = color[2])
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par(mfrow = c(1,1))
plot(zseq, Prob[,1], type = "l", lwd = 3, bty = "n", ylim = c(0,1), xlab = "z",

ylab = "Pr(state 1)", col = color[1])
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Non-parametric modeling of the transition probalities

In practice, of course we do not know the exact form of the relationship between z and the transition prob-
abilities. Therefore, LaMa also makes non-parametric modeling trivially easy. Here we model the transition
probabilities using P-splines. We do so in first calculating the design matrix using the splines package
which we can easily be handled by tpm_g().

Building the B-spline design matrix

Z = splines::bs(x = z, df = 8) ## B-spline design matrix

# visualizing the splines
zseq = seq(min(z), max(z), length = 200)
Zseq = splines::bs(x = zseq, df = 8)

plot(zseq, Zseq[,1], type = "l", lwd = 3, bty = "n",
xlim = c(zseq[1], zseq[200]), ylim = c(0,0.7), xlab = "z", ylab = "basis function")

for(i in 2:(ncol(Zseq)-1)){
lines(zseq, Zseq[,i], lwd = 3, col = i)

}
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Writing the negative log-likelihood function

We only need to make small changes to the likelihood function. In general, a penalty for the curvature
should also be added, which is done in the last lines.

mllk_np = function(theta.star, x, Z, lambda){
beta = matrix(theta.star[1:(2+2*ncol(Z))], nrow = 2)
Gamma = tpm_g(Z = Z[-1,], beta = beta) # calculating all tpms
delta = c(1, exp(theta.star[2+2*ncol(Z)+1]))
delta = delta / sum(delta)
mu = theta.star[2+2*ncol(Z)+1+1:2]
sigma = exp(theta.star[2+2*ncol(Z)+3+1:2])
# calculate all state-dependent probabilities
allprobs = matrix(1, length(x), 2)
for(j in 1:2){ allprobs[,j] = dnorm(x, mu[j], sigma[j]) }
# return negative for minimization
l = forward_g(delta, Gamma, allprobs)
# penalize curvature
penalty = sum(diff(beta[1,-1], differences = 4)ˆ2)+

sum(diff(beta[2,-1], differences = 4)ˆ2)
return(-l + lambda*penalty)

}

Fitting a non-parametric HMM

theta.star = c(-2,-2, rep(0, 2*ncol(Z)), # starting values state process
0, # starting value initial distribution
4, 14 ,log(3),log(5)) # starting values state-dependent process
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t1 = Sys.time()
mod_np = nlm(mllk_np, theta.star, x = x, Z = Z, lambda = 70)
# in this case we don't seem to need a lot of penalization
Sys.time()-t1
#> Time difference of 0.700963 secs

The model fit is still quite fast for non-parametric modeling.

Visualizing results

Again, we use tpm_g() and stationary() to tranform the unconstraint parameters to working parameters.

# transform parameters to working
beta_hat_np = matrix(mod_np$estimate[1:(2+2*ncol(Z))], nrow = 2)
Gamma_hat_np = tpm_g(Z = Z[-1,], beta = beta_hat_np)

# we calculate the average state distribution overall all covariate values
Gamma_seq_np = tpm_g(Z = Zseq, beta = beta_hat_np)
Prob_np = matrix(nrow = length(zseq), ncol = 2)
for(i in 1:length(zseq)){ Prob_np[i,] = stationary(Gamma_seq_np[,,i]) }

# visualizing the Spline fit
par(mfrow = c(1,2))
plot(zseq, Gamma_seq_np[1,2,], type = "l", lwd = 3, bty = "n", ylim = c(0,1),

xlab = "z", ylab = "gamma_12_hat", col = color[1])
plot(zseq, Gamma_seq_np[2,1,], type = "l", lwd = 3, bty = "n", ylim = c(0,1),

xlab = "z", ylab = "gamma_21_hat", col = color[2])
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par(mfrow = c(1,1))
plot(zseq, Prob_np[,1], type = "l", lwd = 3, bty = "n", ylim = c(0,1), xlab = "z",

ylab = "Pr(state 1)", col = color[1])
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Covariate effects in the state-dependent process

We now look at a setting, where covariates influence the mean of the state-dependent distribution, while
the state switching is controlled by a homogeneous Markov chain. This is often called Markov-switching
regression. Assuming the observation process to be conditionally normally distributed, this means

Xt | St = j ∼ N(β
′

jzt, σ2
j ), j = 1, . . . , N.

Setting parameters for simulation

sigma = c(1, 1)
# each row is now the vector of state-dependent regression parameters
beta = matrix(c(8, 10, # intercepts

-2, 1, 0.5, -0.5), # covariate effects
nrow = 2)

n = 1000
set.seed(123)
z = rnorm(n)
Z = cbind(z, zˆ2) # quadratic effect of z

Gamma = matrix(c(0.9, 0.1, 0.05, 0.95), nrow = 2, byrow = TRUE) # homogeneous
delta = stationary(Gamma) # stationary Markov chain
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Simulation

s = x = rep(NA, n)
s[1] = sample(1:2, 1, prob = delta)
x[1] = rnorm(1, beta[s[1],]%*%c(1, Z[1,]), # state-dependent regression

sigma[s[1]])
for(t in 2:n){

s[t] = sample(1:2, 1, prob = Gamma[s[t-1],])
x[t] = rnorm(1, beta[s[t],]%*%c(1, Z[t,]), # state-dependent regression

sigma[s[t]])
}

par(mfrow = c(1,2))
plot(x[1:400], bty = "n", pch = 20, ylab = "x",

col = c(color[1], color[2])[s[1:400]])

plot(z[which(s==1)], x[which(s==1)], pch = 16, col = color[1], bty = "n",
ylim = c(0,15), xlab = "z", ylab = "x")

points(z[which(s==2)], x[which(s==2)], pch = 16, col = color[2])
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Parametric modeling of the state-dependent regressions

Writing the negative log-likelihood function

mllk_reg = function(theta.star, x, Z){
Gamma = tpm(theta.star[1:2]) # homogeneous tpm
delta = stationary(Gamma) # stationary Markov chain
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beta = matrix(theta.star[2+1:(2+2*2)], nrow = 2)
sigma = exp(theta.star[2+2+2*2 +1:2])
# calculate all state-dependent probabilities
allprobs = matrix(1, length(x), 2)
# state-dependent regression
for(j in 1:2){ allprobs[,j] = dnorm(x, cbind(1,Z)%*%beta[j,], sigma[j]) }
# return negative for minimization
-forward(delta, Gamma, allprobs)

}

Fitting a Markov-switching regression model

theta.star = c(-2, -3, # starting values state process
8, 10, rep(0,4), # starting values for regression
log(1),log(1)) # starting values for sigma

t1 = Sys.time()
mod_reg = nlm(mllk_reg, theta.star, x = x, Z = Z)
Sys.time()-t1
#> Time difference of 0.04320598 secs

Visualizing results

Gamma_hat_reg = tpm(mod_reg$estimate[1:2]) # calculating all tpms
delta_hat_reg = stationary(Gamma_hat_reg)
beta_hat_reg = matrix(mod_reg$estimate[2+1:(2*2+2)], nrow = 2)
sigma_hat_reg = exp(mod_reg$estimate[2+2*2+2 +1:2])

# we have some label switching
plot(z, x, pch = 16, bty = "n", xlab = "z", ylab = "x", col = color[s])
points(z, x, pch = 20)
curve(beta_hat_reg[1,1] + beta_hat_reg[1,2]*x + beta_hat_reg[1,3]*xˆ2,

add = TRUE, lwd = 4, col = color[2])
curve(beta_hat_reg[2,1] + beta_hat_reg[2,2]*x + beta_hat_reg[2,3]*xˆ2,

add = TRUE, lwd = 4, col = color[1])
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Non-parametric modeling of the state-dependent regressions

This is now a trivial task, just combininig the previous two examples.

Again building the B-spline design matrix

Z = splines::bs(x = z, df = 6) ## B-spline design matrix

Writing the negative log-likelihood function

mllk_npreg = function(theta.star, x, Z, lambda){
Gamma = tpm(theta.star[1:2]) # homogeneous tpm
delta = stationary(Gamma) # stationary Markov chain
beta = matrix(theta.star[2+1:(2+2*ncol(Z))], nrow = 2)
sigma = exp(theta.star[2+2+2*ncol(Z) + 1:2])
# calculate all state-dependent probabilities
allprobs = matrix(1, length(x), 2)
# state-dependent regression
for(j in 1:2){ allprobs[,j] = dnorm(x, cbind(1,Z)%*%beta[j,], sigma[j]) }
# return negative for minimization
l = forward(delta, Gamma, allprobs)
# penalize curvature
penalty = sum(diff(beta[1,-1], differences = 3)ˆ2)+

sum(diff(beta[2,-1], differences = 3)ˆ2)
return(-l + lambda*penalty)

}
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Fitting a non-parametric Markov-switching regression model

theta.star = c(-2,-3, # starting values state process
8, 10, rep(0, 2*ncol(Z)), # starting values for regression
log(1),log(1)) # starting values for sigma

t1 = Sys.time()
mod_npreg = nlm(mllk_npreg, theta.star, x = x, Z = Z, lambda = 10)
# small penalty
Sys.time()-t1
#> Time difference of 0.19801 secs

Visualizing results

Gamma_hat_npreg = tpm(mod_npreg$estimate[1:2]) # calculating all tpms
delta_hat_npreg = stationary(Gamma_hat_npreg)
beta_hat_npreg = matrix(mod_npreg$estimate[2+1:(2+2*ncol(Z))], nrow = 2)
sigma_hat_npreg = exp(mod_npreg$estimate[2+2+2*ncol(Z) + 1:2])

zseq = seq(min(z), max(z), length = 200)
Zplot = splines::bs(x = zseq, df = 6)
xhat = cbind(1, Zplot)%*%t(beta_hat_npreg)

plot(z, x, pch = 16, bty = "n", xlab = "z", ylab = "x", col = color[s])
points(z, x, pch = 20)
for(j in 1:2){

for(i in 1:ncol(Zplot)){
lines(zseq, beta_hat_npreg[j,1] + Zplot[,i]*beta_hat_npreg[j,1+i], lwd = 0.3, col = color[j])
}

}
lines(zseq, xhat[,1], lwd = 4, col = color[1])
lines(zseq, xhat[,2], lwd = 4, col = color[2])
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