Hidden semi-Markov models

Jan-Ole Koslik

So-called hidden semi-Markov models (HSMMs) are a flexible generalization of HMMs to a semi-Markovian
state process which is motivated by the fact that for homogeneous HMMs, the time spent in a hidden state,
also called the state dwell time or sojourn time is necessarily geometrically distributed as a consequence of
the Markov assumption. HSMMs are designed to mitigate this often unrealistic assumption by allowing for
arbitrary distributions on the positive integers to be estimated for the state dwell time. Inference in such
models becomes more involved, but Langrock and Zucchini (2011) showed that HSMMs can be estimated
conveniently via approximating them by HMMs with an extended state space. Each state of the HSMMs is
represented by a state aggregate of several states and the transition probabilities within each aggregate are
designed carefully to represent the chosen dwell-time distribution. For more details see Langrock and Zucchini
(2011) or Zucchini, MacDonald, and Langrock (2016). Due to this approximate inference procedure, such
models can again be fitted by numerically maximizing the (approximate) likelihood which can be evaluated
using the forward algorithm.

Homogeneous HSMMs

We begin by considering homogeneous HSMMs. In such models, each state has an associated state dwell-time
distribution. The transition probability matrix of a regular HMM is replaced by these distributions and the
conditional transition probabilities given the state is left.

Setting parameters

Here we choose the simplest case of dwell times that are shifted Poisson distributed. We have to specify
the Poisson mean for each state, the conditional transition probability matrix called 2 and the parameters
of the state-dependent process.

lambda = c(7, 4, 4)
omega = matrix(c(0, 0.7, 0.3,
0.5, 0, 0.5,
0.7, 0.3, 0), nrow = 3, byrow = TRUE)
mu = c(10, 40, 100)
sigma = c(5, 20, 50)

color = c("orange", "deepskyblue", "seagreen2")
curve(dnorm(x, mu[1], sigma[1]), 1lwd = 2, col = color[1], bty = "n",

xlab = "x", ylab = "density", xlim = c(0, 150), n = 300)
curve (dnorm(x, mul[2], sigma[2]), 1lwd = 2, col = color[2], add
curve (dnorm(x, mu[3], sigma[3]), lwd = 2, col = color[3], add

T)
T)

0.08
J

[{e}
O_ —
o
P
g 2
[5) o
©
[aN]
C)_ —
o
o
o
o
[I I]
0 50 100 150
X

Simulating data

We simulate data by drawing dwell times from the dwell-time distribution of the current state and then
draw the next state using the conditional transition probabilities. The state-dependent process is drawn
conditional on the current state.

set.seed(123)

k = 50 # number of stays

s = rep(NA, k)

s[1] = sample(1:3, 1) # uniform inittal distribution

staylength = rpois(1l, lambdals[1]]) + 1 # drawing dwell time from shifted Poisson
C = rep(s[1], staylength)

x = rnorm(staylength, muls[1]], sigmals[1]1])

for(t in 2:k){
conditionally drawing state
s[t] = sample(c(1:3)[-s[t-1]], 1, prob = omegals([t-1], -s[t-1]1)
staylength = rpois(1l, lambda[s[t]]) + 1 # drawing dwell time from shifted Poisson

C
X

}

c(C, rep(s[t], staylength))
c(x, rnorm(staylength, mu[s[t]], sigmals[t]]))

plot(x, pch = 20, col = color[C], bty = "n")
legend("topright", col = color, pch = 20,
legend = paste("state", 1:3), box.lwd = 0)

state 1

S * state 2
N
state 3
o
m p—
—
X o
o p—
—
8] .. F 4 ¢ o’ .‘ ‘ ° ° ° ..
¢ o.: ° o.. ° .5 o. ° oo ° L
hd . % L] o °
o - ° ¢
I T T T T T]
0 50 100 150 200 250 300

Index

Writing the negative log-likelihood function

We now write the negative log-likelihood function for an approximating HMM. As a semi-Markov chain is
specified in terms of state-specific dwell-time distributions and conditional transition probabilities given that
the current state is left, we have to compute both (here called dm and omege). The transition probability
matrix of the approxmiating HMM can then be computed by the function tpm_hsmm() where the exact
procedure is detailed by Langrock and Zucchini (2011). We need the extra argument agsizes to specify the
aggregate sizes that should be used to approximate the dwell-time distributions. These should be chosen
such that most of the support of the state-specific dwell-time distributions is covered.

mllk = function(theta.star, x, N, agsizes){
mu = theta.star[1:N]
sigma = exp(theta.star[N+1:N])
lambda = exp(theta.star[2#N+1:N]J)
if (N>2)4{

this 7s a bit complicated as we need the diagonal elements to be zero

omega = matrix(0,N,N)
omegal!diag(N)] = as.vector(t(matrix(c(rep(1,N),

exp(theta.star [3*N+1: (N*x(N-2))])),N,N-1)))

omega = t(omega)/apply(omega,2,sum)
} else{ omega = matrix(c(0,1,1,0),2,2) }
dm = list() # list of dwell-time distributions

for(j in 1:N){ dm[[j]] = dpois(l:agsizes[jl-1, lambdaljl) } # shifted Poisson

Gamma = LaMa::tpm_hsmm(omega, dm)
delta = LaMa::stationary(Gamma)
allprobs = matrix(1l, length(x), N)
ind = which(!is.na(x))
for(j in 1:N){
allprobs[ind, j] = dnorm(x[ind], mu[j], sigmaljl)
}

-LaMa: :forward_s(delta, Gamma, allprobs, agsizes)

}

Fitting an HSMM (as an approxiating HMM) to the data

intial values

theta.star = c(10, 40, 100, log(c(5, 20, 50)), # state-dependent
log(c(7,4,4)), # dwell time means
rep(0, 3)) # omega

agsizes = qpois(0.95, lambda)+1

tl = Sys.time()

mod = nlm(mllk, theta.star, x = x, N = 3, agsizes = agsizes, stepmax = 2)
Sys.time()-t1

#> Time difference of 0.2383549 secs

HSMMs are rather slow (even using C++) as we translate the additional model complexity into a higher
computational overhead (31 states here).

Results

N=23

(mu = mod$estimate[1:N])

#> [1] 10.16569 39.06161 107.6603/

(sigma = exp(mod$estimate[N+1:N]))

#> [1] 4.78882 19.35639 48.56115

(lambda = exp(mod$estimate [2*N+1:N]))

#> [1] 6.942983 4.595469 3.354765

omega = matrix(0,N,N)

omegal!diag(N)] = as.vector(t(matrix(c(rep(1,N),
exp (mod$estimate [3*N+1: (N*(N-2))]1)) ,N,N-1)))

omega = t(omega)/apply(omega,2,sum)

omega

#> [,1] [,2] &)

#> [1,] 0.0000000 0.5541031 0.4458969

#> [2,] 0.5040938 0.0000000 0.4959062

#> [3,] 0.6654703 0.3345297 0.0000000

Real-data application

We now want to briefly show the analysis of a real data set using hidden semi-Markov models. For this
purpose we use the movement track of an Arctic muskox contained in the R package PHSMM. Originally these
data where collected by Beumer et al. (2020) and have already been analyzed by Pohle, Adam, and Beumer
(2022).

install.packages ("PHSMM")
data = PHSMM: :muskox[1:1000,] # only using first 1000 observations for speed

head(data)

#> date tday T Y step
#> 88273 2013-10-12 15 513299.2 8264867 17.998874
#> 88274 2013-10-12 16 513283.4 8264875 8.214733
#> 88275 2013-10-12 17 513284.3 8264883 7.205098
#> 88276 2013-10-12 18 513280.4 8264877 53.378332
#> 88277 2013-10-12 19 513252.0 8264922 719.242687
#> 88278 2013-10-12 20 513386.7 8265629 10.797127

As these data have already been preprossed, we can immediately write the negative log-likelihood function.
When modeling the dwell-time distribution of real processes, it is typically advisable to use a more flexible
distribution than the shifted Poisson distribution, as the latter cannot account for overdispersion. Here,
we will employ the shifted negative binomial distribution that yields the Poisson distribution as a special
case for the dispersion parameter equal to zero. The state-dependent step lengths are modeled by gamma
distributions, where we reparametrize the gamma distribution in terms of its mean and standard deviation

as opposed to shape and scale for better interpretability.

mllk_muskox = function(theta.star, step, N, agsizes){
parameter transformation from working to mnatural
mu = exp(theta.star[1:N]) # step mean
sigma = exp(theta.star[N+1:N]) # step standard deviation
mu_dwell = exp(theta.star[2*N+1:N]) # dwell time mean
phi = exp(theta.star[3*N+1:N]) # dwell time dispersion
if (N>2){
conditional transition probability matriz
omega = matrix(0,N,N)
omegal!diag(N)] = as.vector(t(matrix(c(rep(1,N),
exp(theta.star [4*N+1: (N*x(N-2))]1)),N,N-1)))
omega = t(omega)/apply(omega,2,sum)
} else{ omega = matrix(c(0,1,1,0),2,2) }
dm = 1list() # list of dwell-time distributions
for(j in 1:N){

R allows to parametrize by mean and size where size = 1/dispersion

dm[[j]] = dnbinom(1l:agsizes[j]l-1, mu=mu_dwell[j], size=1/phil[j])
3
Gamma = LaMa: :tpm_hsmm(omega, dm)
delta = LaMa::stationary(Gamma)
allprobs = matrix(1l, length(step), N)
ind = which(!is.na(step))
for(j in 1:N){
we reparametrise the gamma distribution in terms of mean and sd
allprobs[ind,j] = dgamma(step([ind], shape = mul[j]l~2 / sigmalj]~2,
scale = sigmal[jl°2 / muljl)
}

-LaMa: : forward_s(delta, Gamma, allprobs, agsizes)

Fitting an HSMM (as an approxiating HMM) to the muskox data

intial values

theta.star = c(log(c(4, 50, 300, 4, 50, 300)), # state-dependent mean and sd

log(c(3,3,5)), # dwell time means
log(c(0.01, 0.01, 0.01)), # dwell time dispersion
rep(0, 3)) # omega

agsizes = c(11,11,14)

tl = Sys.time()

mod_muskox = nlm(mllk_muskox, theta.star, step=data$step, N=3,
agsizes=agsizes,iterlim = 500)

Sys.time()-t1

#> Time difference of 1.870519 secs

Results
We retransform the parameters for interpretation

theta.star = mod_muskox$estimate; N = 3

(mu = exp(theta.star[1:N])) # step mean

#> [1] 4.408109 55.515891 306.504787

(sigma = exp(theta.star[N+1:N])) # step standard deviation

#> [1] 3.148127 50.337602 331.539171

(mu_dwell = exp(theta.star[2*N+1:N])) # dwell time mean

#> [1] 2.544975 2.660335 5.541752

(phi = exp(theta.star[3*N+1:N]1)) # dwell time dispersion

#> [1] 3.643785e-05 3.751638e-02 1.836526e-09

omega = matrix(0,N,N)

omegal[!diag(N)] = as.vector(t(matrix(c(rep(1,N),
exp(theta.star [4#N+1: (N*(N-2))]1)),N,N-1)))

omega = t(omega)/apply(omega,2,sum)

omega

#> [,1]7 [,2] [,3]

#> [1,] 0.0000000 0.6865910 3.134090e-01

#> [2,] 1.0000000 0.0000000 2.959219e-08

#> [3,] 0.8210834 0.1789166 0.000000e+00

In this case the Poisson distribution would have been suffficiently flexible, as all dispersion parameters were
estimated very close to zero. We can easily visualize the estimated state-specific dwell-time distributions:

par (mfrow = c(1,3))
for(j in 1:N){
plot(l:agsizes[j], dnbinom(1l:agsizes[j]-1, mu=mu_dwell[j], size = 1/philjl),
type = "h", lwd = 2, col = color[j], xlab = "dwell time (hours)",
ylab = "probabilities", main = paste("state",j), bty = "n", ylim = c(0,0.25))

state 1 state 2 state 3

wn n wn
N N N -
<} <} =}
o o o
N N N
<} o <}
n n n
— — —
<} [} <}
1%} 1% 1%}
] o]
= = =
© © [
Q = Q
o o o
a s a
o o o
— — —
<} [} <}
Yo} n wn
o - o o 4
<} o <}
(=3 o | (=3
S S "o S
o o o
| I R E— | B E— — r T T T T T 1
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 12 14
dwell time (hours) dwell time (hours) dwell time (hours)
References

Beumer, Larissa T, Jennifer Pohle, Niels M Schmidt, Marianna Chimienti, Jean-Pierre Desforges, Lars
H Hansen, Roland Langrock, Stine Hgjlund Pedersen, Mikkel Stelvig, and Floris M van Beest. 2020.
“An Application of Upscaled Optimal Foraging Theory Using Hidden Markov Modelling: Year-Round
Behavioural Variation in a Large Arctic Herbivore.” Movement Ecology 8: 1-16.

Langrock, Roland, and Walter Zucchini. 2011. “Hidden Markov Models with Arbitrary State Dwell-Time
Distributions.” Computational Statistics € Data Analysis 55 (1): 715-24.

Pohle, Jennifer, Timo Adam, and Larissa T Beumer. 2022. “Flexible Estimation of the State Dwell-Time
Distribution in Hidden Semi-Markov Models.” Computational Statistics €& Data Analysis 172: 107479.

Zucchini, Walter, Iain L. MacDonald, and Roland Langrock. 2016. Hidden Markov Models for Time Series:
An Introduction Using R. Boca Raton: Chapman & Hall/CRC.

	Homogeneous HSMMs
	Setting parameters
	Simulating data
	Writing the negative log-likelihood function
	Fitting an HSMM (as an approxiating HMM) to the data
	Results

	Real-data application
	Fitting an HSMM (as an approxiating HMM) to the muskox data
	Results

	References

