
Continuous-time HMMs

Jan-Ole Koslik

The regular HMM formulation needs a key assumption to be applicable, namely the data need to be observed
at regular, equidistant time-points such that the transition probabilties can be interpreted meaningfully
w.r.t. a specific time unit. If this is not the case, the model used should acocunt for this by building on a
mathematical formulation in continuous time. The obvious choice here is to retain most of the HMM model
formulation, but replace the unobserved discrete-time Markov chain with a continuous-time Markov chain.
However, here it is important to note that the so-called snapshot property needs to be fulfilled, i.e. the
observed process at time t can only depend on the state at that time instant and not on the interval since
the previous observation. For more details see Glennie et al. (2023).

As transition probabilities can only be specified w.r.t. to some time unit, but we have irregular observation
times t1, . . . , tT , such a chain is characterized by a so-called (infinitesimal) generator matrix

Q =

q11 q12 · · · q1N

q21 q22 · · · q2N

...
...

. . .
...

qN1 qN2 · · · qNN

 ,

where the diagonal entries are qii = −
∑

j ̸=i qij , qij ≥ 0 for i ̸= j. This matrix can be interpreted as the
derivative of the transition probability matrix and completely describes the dynamics of the state process.
For such a chain, the time-spent in a state i is exponentially distributed with rate −qii and conditional on
leaving the state, the probability to transition to a state j ̸= i is ωij = qij/ − qii. For a more detailed
introduction see Dobrow (2016) (pp. 265 f.). For observation times t1 and t2, we can then obtain the
transition probability matrix between these points via the identity

Γ(t1, t2) = exp(Q(t2 − t1)),

where exp() is the matrix expoential. This follows from the so-called Kolmogorov forward equations, but
again, for more details see Dobrow (2016). We can easily see that such a model now accounts for irregular
observation times.

Example 1: two states

Setting parameters for simulation

2-state example

generator matrix Q:
Q = matrix(c(-0.5,0.5,1,-1), nrow = 2, byrow = TRUE)
state 1 has a smaller rate (dwell-time in state one ~ Exp(1)), i.e. it exhibits
longer dwell times than state 3 with rate 3.

parameters for the state-dependent (normal) distributions
mu = c(5, 20)
sigma = c(2, 5)

1

Simulating data

We simulate the continuous-time Markov chain by drawing the exponentially distributed state dwell-times.
Within a stay, we can assume whatever structure we like for the observation times, as these are not explicitly
modeled. Here we choose to generate them by a Poisson process with rate λ = 1, but this choice is arbitrary.
For more details on Poisson point processes, see the MM(M)PP vignette.

set.seed(123)

k = 200 # number of state switches
trans_times = s = rep(NA, k) # time points where the chain transitions
s[1] = sample(1:2, 1) # initial distribuion c(0.5, 0.5)
exponentially distributed waiting times
trans_times[1] = rexp(1, -Q[s[1],s[1]])
n_arrivals = rpois(1, trans_times[1])
obs_times = sort(runif(n_arrivals, 0, trans_times[1]))
x = rnorm(n_arrivals, mu[s[1]], sigma[s[1]])
for(t in 2:k){

s[t] = c(1,2)[-s[t-1]] # for 2-states, always a state swith when transitioning
exponentially distributed waiting times
trans_times[t] = trans_times[t-1] + rexp(1, -Q[s[t], s[t]])
n_arrivals = rpois(1, trans_times[t]-trans_times[t-1])
obs_times = c(obs_times,

sort(runif(n_arrivals, trans_times[t-1], trans_times[t])))
x = c(x, rnorm(n_arrivals, mu[s[t]], sigma[s[t]]))

}

Let’s visualize the simulated continuous-time HMM:

color = c("orange", "deepskyblue")

n = length(obs_times)
plot(obs_times[1:50], x[1:50], pch = 16, bty = "n", xlab = "observation times",

ylab = "x", ylim = c(-5,25))
segments(x0 = c(0,trans_times[1:48]), x1 = trans_times[1:49],

y0 = rep(-5,50), y1 = rep(-5,50), col = color[s[1:49]], lwd = 4)
legend("topright", lwd = 2, col = color,

legend = c("state 1", "state 2"), box.lwd = 0)

2

0 10 20 30 40

−
5

0
5

10
15

20
25

observation times

x

state 1
state 2

Writing the negative log-likelihood function

The likelhood of a continuous-time HMM for observations xt1 , . . . , xtT
at irregular time points t1, . . . , tT has

the exact same structure as the regular HMM likelihood:

L(θ) = δ(1)Γ(t1, t2)P (xt2)Γ(t2, t3)P (xt3) . . . Γ(tT −1, tT)P (xtT
)1t,

where δ(1), P and 1t are as usual. Thus we can fit such models using the standard implementation of the
general forward algorithm forward_g() with time-varying transition probability matrices.

mllk = function(theta.star, timediff, x, N=2){
mu = theta.star[1:N]
sigma = exp(theta.star[N+1:N])
Q = diag(N) # generator matrix
Q[!Q] = exp(theta.star[2*N+1:(N*(N-1))])
diag(Q) = 0
diag(Q) = -rowSums(Q)
delta = solve(t(Q+1), rep(1,N), tol = 1e-20) # stationary distribution of the
continuous-time Markov chain
Qube = LaMa::tpm_cont(Q, timediff) # this computes exp(Q*timediff)
allprobs = matrix(1, nrow = length(x), ncol = N)
ind = which(!is.na(x))
for(j in 1:N){

allprobs[ind,j] = dnorm(x[ind], mu[j], sigma[j])
}
-LaMa::forward_g(delta, Qube, allprobs)

}

3

Fitting a continuous-time HMM to the data

theta.star = c(5, 15, log(3), log(5), # mu and sigma
log(1), log(0.5)) # off-diagonals of Q

timediff = diff(obs_times)

t1 = Sys.time()
mod = nlm(mllk, theta.star, timediff=timediff, x=x, stepmax = 10)
we often need the stepmax, as the matrix exponential can be numerically unstable
Sys.time()-t1
#> Time difference of 0.06428194 secs

Results

N = 2
mu
round(mod$estimate[1:N],2)
#> [1] 5.06 20.24
sigma
round(exp(mod$estimate[N+1:N]))
#> [1] 2 5
Q = diag(N) # generator matrix
Q[!Q] = exp(mod$estimate[2*N+1:(N*(N-1))])
diag(Q) = 0
diag(Q) = -rowSums(Q)
round(Q,3)
#> [,1] [,2]
#> [1,] -0.479 0.479
#> [2,] 0.905 -0.905

Example 2: three states

Setting parameters for simulation

2-state example

generator matrix Q:
Q = matrix(c(-0.5,0.2,0.3,

1,-2, 1,
0.4, 0.6, -1), nrow = 3, byrow = TRUE)

parameters for the state-dependent (normal) distributions
mu = c(5, 15, 30)
sigma = c(2, 3, 5)

4

Simulating data

The simulation is very similar but we now also have to draw which state to transition to, as explained in the
beginning.

set.seed(123)

k = 200 # number of state switches
trans_times = s = rep(NA, k) # time points where the chain transitions
s[1] = sample(1:3, 1) # uniform initial distribuion
exponentially distributed waiting times
trans_times[1] = rexp(1, -Q[s[1],s[1]])
n_arrivals = rpois(1, trans_times[1])
obs_times = sort(runif(n_arrivals, 0, trans_times[1]))
x = rnorm(n_arrivals, mu[s[1]], sigma[s[1]])
for(t in 2:k){

off-diagonal elements of the s[t-1] row of Q divided by the diagonal element
give the probabilites of the next state
s[t] = sample(c(1:3)[-s[t-1]], 1, prob = Q[s[t-1],-s[t-1]]/-Q[s[t-1],s[t-1]])
exponentially distributed waiting times
trans_times[t] = trans_times[t-1] + rexp(1, -Q[s[t], s[t]])
n_arrivals = rpois(1, trans_times[t]-trans_times[t-1])
obs_times = c(obs_times,

sort(runif(n_arrivals, trans_times[t-1], trans_times[t])))
x = c(x, rnorm(n_arrivals, mu[s[t]], sigma[s[t]]))

}

Fitting a 3-state continuous-time HMM to the data

theta.star = c(5, 10, 25, log(2), log(2), log(6), # mu and sigma
rep(0, 6)) # off-diagonals of Q

timediff = diff(obs_times)

t1 = Sys.time()
mod2 = nlm(mllk, theta.star, timediff=timediff, x=x, N = 3, stepmax = 10)
Sys.time()-t1
#> Time difference of 0.2414498 secs

Results

N = 3
mu
round(mod2$estimate[1:N],2)
#> [1] 4.90 15.45 29.10
sigma
round(exp(mod2$estimate[N+1:N]),2)
#> [1] 1.80 2.58 5.06
Q = diag(N) # generator matrix
Q[!Q] = exp(mod2$estimate[2*N+1:(N*(N-1))])

5

diag(Q) = 0
diag(Q) = -rowSums(Q)
round(Q, 3)
#> [,1] [,2] [,3]
#> [1,] -0.888 0.565 0.323
#> [2,] 2.821 -3.469 0.647
#> [3,] 0.000 0.770 -0.770

References
Dobrow, Robert P. 2016. Introduction to Stochastic Processes with r. John Wiley & Sons.
Glennie, Richard, Timo Adam, Vianey Leos-Barajas, Théo Michelot, Theoni Photopoulou, and Brett T

McClintock. 2023. “Hidden Markov Models: Pitfalls and Opportunities in Ecology.” Methods in Ecology
and Evolution 14 (1): 43–56.

6

	Example 1: two states
	Setting parameters for simulation
	Simulating data
	Writing the negative log-likelihood function
	Fitting a continuous-time HMM to the data
	Results

	Example 2: three states
	Setting parameters for simulation
	Simulating data
	Fitting a 3-state continuous-time HMM to the data
	Results

	References

