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Motivating example
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Quick Recap on HMMs

Doubly stochastic process:

YT T
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» every observation is generated by one of N possible distributions fi, ..., fp,

» the state process selects which distribution is active at any given time point
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More formal definition of an HMM

An N-state HMM is a (doubly) stochastic process in discrete time, with

» an unobserved state process Si, Sy, ..., St taking values in {1,..., N},
» and an observation process X1, Xo, ..., X7,

such that
> f(st|s1,...,5t—1)="r(st|st—1)

(Markov property)

> f(Xt | SLy« -y STy X1y -+« s Xt—1, Xt+1, - - - 7XT) = f(Xt | St)
(conditional independence assumption)
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Reminder: Markov chains

The Markovian state process is fully characterised by the initial distribution
W = (Pr(S1 =1),...,Pr(S1 = N))
and the transition probabilities
’Y,(jt) =Pr(Sey1 =7 St =i).
which we summarise in the transition probability matrix (t.p.m.)

r® = (ijt))iFlw-”V'

5/24



Example continued

Fitting a basic 2-state HMM to the elephant data yields the following results:
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Example continued
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Example continued (the problems)

.. which is all very nice, but
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Example continued (the problems)

. which is all very nice, but
1. our model assumes the unconditional state probabilities are constant,
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Example continued (the problems)

. which is all very nice, but

1. our model assumes the unconditional state probabilities are constant,

2. and the distribution of time spent in a state is geometric (often criticised)
(e.g. for state 1: Pr(R; = r) = 0.817710.19)
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Periodic variation

In the real world, there are many reasons for processes to involve a periodic component.
For animal data, this could be

» diurnal/ time-of-day variation,

» seasonal variation,

» migratory behaviour.
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How to model periodic variation

Typical parametric! model:
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'We can also do this non-parametrically (Feldmann et al., 2023).
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Periodic variation

For a cycle length of L, both options lead to
r® =rtb forallt=1,...,T, (1)

which is what we mean by periodic variation.
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Periodic stationarity

» We would like to have Pr(S; = i) as a function of the time of day.
» For periodic variation, this is typically approximated? by p(t) which is the solution to

N
p(t)I‘(t) = p(t), s.t. Zpgt) =1, fort=1,..., L.
i=1

» But this estimate is biased, as it ignores the preceding process dynamics.

2e.g. Patterson et al., 2009
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Periodic stationarity

» Consider for every t € {1,..., L} the thinned Markov chain S, S¢i1, StyoL, - - - -
O B O D i oy e s Ly A &
N

OO @O0

» It has constant t.p.m.

P, =1® . D) pl-1),
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Periodic stationarity

» Consider for every t € {1,..., L} the thinned Markov chain S, S¢i1, StyoL, - - - -

000,00 6.0, 0
OO @O0

» It has constant t.p.m.

P, =1® . D) pl-1),

» Thus each thinned chain converges, and we get Pr(S; = i) for each t by solving
S0P, =60 st Z 5" =
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Periodically stationary distribution (Elephant example)
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Dwell-time distribution(s)

» We added periodic variation to our model, which is much more realistic.
» But what happened to the dwell-time distributions? Did it help?
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Time-varying dwell-time distribution

First, consider the dwell-time distribution only at a certain time point t:

d(r) = (1Y) H Y reN

%/—/ \/7/
leave stay r times
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Time-varying dwell-time distribution (Elephant example)
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Time-varying dwell-time distribution

» The time-varying dwell-time distributions allow for detailed inference regarding the
state process.

» However, it might be cumbersome to interpret all of them (e.g. minute-by-minute
data: L = 1440).

» Focus of the inference is often the overall distribution of time spent in each state...
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Overall dwell-time distribution

of the dwell-time distribution in state / is
L
di(r) = wd(r), reN

where with the mixture weights defined as

~1) (t—1
o T (1), (D
Wi (t 1 (t 1)’
Zt 12/7£I(S i

where 8(!) is the periodically stationary distribution.

t=1,...,L

For a periodically stationary Markov chain defined by I'(t) ¢t = 1,...,

L, the p.m.f.
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Overall dwell-time distribution (Elephant example)
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Conclusion and Outlook

» In HMM including periodic variation, dwell-time distributions can be very

non-geometric, i.e.

it alleviates biologically unrealistic consequences of the Markov assumption.

» Thus, criticising the Markov assumption for implying geometric dwell times falls short
of such models’ actual potential.

v
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Thank you very much for your attention!
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