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Quick Recap on HMMs

Doubly stochastic process:

. . . St−1 St St+1 . . .

Xt−1 Xt Xt+1

hidden

observed

▶ every observation is generated by one of N possible distributions f1, ..., fN ,

▶ the state process selects which distribution is active at any given time point
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More formal definition of an HMM

An N-state HMM is a (doubly) stochastic process in discrete time, with

▶ an unobserved state process S1,S2, . . . ,ST taking values in {1, . . . ,N},
▶ and an observation process X1,X2, . . . ,XT ,

such that

▶ f (st | s1, . . . , st−1) = f (st | st−1)
(Markov property)

▶ f (xt | s1, . . . , sT , x1, . . . , xt−1, xt+1, . . . , xT ) = f (xt | st)
(conditional independence assumption)
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Reminder: Markov chains

The Markovian state process is fully characterised by the initial distribution

δ(1) =
(
Pr(S1 = 1), . . . ,Pr(S1 = N)

)
and the transition probabilities

γ
(t)
ij = Pr(St+1 = j | St = i).

which we summarise in the transition probability matrix (t.p.m.)

Γ(t) = (γ
(t)
ij )i ,j=1,...,N .
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Example continued

Fitting a basic 2-state HMM to the elephant data yields the following results:

step length
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Γ̂ =

(
0.81 0.19
0.29 0.71

)
δ̂ = (0.6, 0.4)
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Example continued
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Example continued (the problems)

... which is all very nice, but

1. our model assumes the unconditional state probabilities are constant,

2. and the distribution of time spent in a state is geometric (often criticised)

(e.g. for state 1: Pr(R1 = r) = 0.81r−10.19)
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Periodic variation

In the real world, there are many reasons for processes to involve a periodic component.
For animal data, this could be

▶ diurnal/ time-of-day variation,

▶ seasonal variation,

▶ migratory behaviour.

. . . St−1 St St+1 . . .

Xt−1 Xt Xt+1

Γ(t−2) Γ(t−1) Γ(t) Γ(t+1)
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How to model periodic variation

Typical parametric1 model:

γ
(t)
ij = mlogit−1

(
β
(ij)
0 +

K∑
k=1

β
(ij)
1k sin

(2πkt
L

)
+

K∑
k=1

β
(ij)
2k cos

(2πkt
L

))
−

4
−

2
0

2

time of day

η
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1We can also do this non-parametrically (Feldmann et al., 2023).
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Periodic variation

For a cycle length of L, both options lead to

Γ(t) = Γ(t+L) for all t = 1, . . . ,T , (1)

which is what we mean by periodic variation.

. . . St St+1 St+2 St+3 St+4 St+5 St+6 . . .

Γ(t) Γ(t+1) Γ(t+2) Γ(t) Γ(t+1) Γ(t+2)
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Bad interpretability

Γ̂ =

0.
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Periodic stationarity

▶ We would like to have Pr(St = i) as a function of the time of day.

▶ For periodic variation, this is typically approximated2 by ρ(t) which is the solution to

ρ(t)Γ(t) = ρ(t), s.t.
N∑
i=1

ρ
(t)
i = 1, for t = 1, . . . , L.

▶ But this estimate is biased, as it ignores the preceding process dynamics.

2e.g. Patterson et al., 2009
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Periodic stationarity

▶ Consider for every t ∈ {1, . . . , L} the thinned Markov chain St , St+L,St+2L, . . . .

. . . St St+1 St+2 St+3 St+4 St+5 St+6 . . .

Γ(t) Γ(t+1) Γ(t+2) Γ(t) Γ(t+1) Γ(t+2)

Γ̃t Γ̃t
. . . St St+3 St+6 . . .

▶ It has constant t.p.m.

Γ̃t = Γ(t) · Γ(t+1) · . . . · Γ(t+L−1).

▶ Thus each thinned chain converges, and we get Pr(St = i) for each t by solving

δ(t)Γ̃t = δ(t) s.t.
N∑
i=1

δ
(t)
i = 1.
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Periodically stationary distribution (Elephant example)
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Dwell-time distribution(s)

▶ We added periodic variation to our model, which is much more realistic.

▶ But what happened to the dwell-time distributions? Did it help?
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Time-varying dwell-time distribution

First, consider the dwell-time distribution only at a certain time point t:

d
(t)
i (r) = (1− γ

(t+r−1)
ii ) ·

r−1∏
j=1

γ
(t+j−1)
ii , r ∈ N

stay r timesleave
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Time-varying dwell-time distribution (Elephant example)
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Time-varying dwell-time distribution

▶ The time-varying dwell-time distributions allow for detailed inference regarding the
state process.

▶ However, it might be cumbersome to interpret all of them (e.g. minute-by-minute
data: L = 1440).

▶ Focus of the inference is often the overall distribution of time spent in each state...
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Overall dwell-time distribution

For a periodically stationary Markov chain defined by Γ(t), t = 1, . . . , L, the p.m.f.
of the dwell-time distribution in state i is

di (r) =
L∑

t=1

w
(t)
i d

(t)
i (r), r ∈ N

where with the mixture weights defined as

w
(t)
i =

∑
l ̸=i δ

(t−1)
l γ

(t−1)
li∑L

t=1

∑
l ̸=i δ

(t−1)
l γ

(t−1)
li

, t = 1, . . . , L,

where δ(t) is the periodically stationary distribution.
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Overall dwell-time distribution (Elephant example)
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Conclusion and Outlook

▶ In HMM including periodic variation, dwell-time distributions can be very
non-geometric, i.e.

▶ it alleviates biologically unrealistic consequences of the Markov assumption.

▶ Thus, criticising the Markov assumption for implying geometric dwell times falls short
of such models’ actual potential.
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Thank you very much for your attention!
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