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HMM — model formulation

. . . St−1 St St+1 . . .

Xt−1 Xt Xt+1

hidden

observed

• every observation xt is generated by one of N possible distributions f1, ..., fN

• hidden state process selects which distribution is active at time t

• state process is a Markov chain
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Reminder: Markov chains

Markovian state process is fully characterised by the initial distribution

δ(1) =
(
Pr(S1 = 1), . . . ,Pr(S1 = N)

)
and the transition probabilities

γ
(t)
ij = Pr(St+1 = j | St = i),

which we summarise in the transition probability matrix (t.p.m.)

Γ(t) = (γ
(t)
ij )i ,j=1,...,N .
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Estimating HMMs

We can efficiently calculate the HMM likelihood using the forward algorithm

L(θ) = δ(1)P(x1)Γ
(1)P(x2)Γ

(2) · . . . · Γ(T−1)P(xT )1,

where P(xt) = diag
(
f1(xt), . . . , fN(xt)

)
.

With some adjustments, we can also calculate the log-likelihood ℓ(θ) to avoid numerical

underflow → optimise in R using standard optimisers like nlm() or optim() .

These approximate the gradient via finite differencing.
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Why nonparametrics?

• component distributions typically selected from parametric family
→ difficult as we can’t do state-specific EDA

• potential covariate effects typically modelled using linear predictors
→ may result in us missing interesting relationships
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Why nonparametrics?

= complicated

→ often substantial lack of fit
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Why nonparametrics?

Misspecification will be compensated by more states but this complicates interpretation.

Obvious alternative: nonparametric approach using penalised splines
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An informal introduction to penalised splines

Idea: Perform basis expansion in x and represent smooth function s(x) as a linear
combination of fixed basis functions Bk(x)

s(x) = b1B1(x) + b2B2(x) + . . .+ bkBk(x) = b⊺B(x)
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For example, when using B-Splines Bk(x) is a piecewise polynomial

and zero outside the outer knots.
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Approximate the true function with a sufficient number of basis functions:

As s should not be too wiggly, we add the penalty

λ

∫
s ′′(x)2 dx = λb⊺Sb,

where S is fixed penalty matrix with entries Sij =
∫
B ′′
i (x)B

′′
j (x) dx .
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Nonparametric emission distributions

. . . St−1 St St+1 . . .

Xt−1 Xt Xt+1

Langrock, Kneib, Sohn, and DeRuiter, 2015
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Markov-switching GAM

. . . St−1 St St+1 . . .

Xt−1 Xt Xt+1

zt−1 zt zt+1

Langrock, Kneib, Glennie, and Michelot, 2017
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Smooth covariate effects on the state process

. . . St−1 St St+1 . . .

Xt−1 Xt Xt+1

zt−1 zt zt+1

Feldmann et al., 2023
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So this is where my spline adventure begins...

• fairly applied project: γ
(t)
ij ∼ s(time of day, day)

• implementation with fixed penalisation
straightforward

But how to find a good penalty strength??
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Smoothness selection for penalised splines
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Smoothness selection for penalised splines

• cross-validation, AIC/BIC or subjective choice

• grid search → curse of dimensionality

• painfully slow and (for me) under-smoothed results

• in general, underdeveloped, most work done for GLMMs and GAMs

Ideally: define the penalised log-likelihood → automatic smoothness-selection
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Smoothness selection for penalised splines

• splines as random effects?

• Laplace approximation?
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Why are splines random effects?

Simple setting involving one penalised spline and no unpenalised parameters:

ℓp(b;λ) = ℓ(b)− 1

2
λb⊺Sb,

• coefficients b = (b1, . . . , bk)

• fixed penalty matrix S
• penalty strength λ

Penalised likelihood function

Lp(b;λ) = L(b) · exp
(
−1

2
λb⊺Sb

)
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We see that

exp
(
−1

2
λb⊺Sb

)
is proportional to a multivariate Gaussian density.

We might as well assume b ∼ N (0,S−1/λ) and add the missing normalisation constant1

Lj(b;λ) = L(b) · (2π)−k/2 det(λS)1/2 exp
(
−1

2
λb⊺Sb

)
giving the joint log-likelihood

ℓj(b;λ) = ℓ(b) −k

2
log(2π) +

1

2
log det(λS)− 1

2
λb⊺Sb

1ignoring potential issues with invertibility here
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How to estimate models with random effects?

Joint likelihood of the data and the random effect as a function of λ

fλ(x ,b) = f (x | b) · fλ(b),

with f (x | b) = L(b) and fλ(b) ∼ N (0,S−1/λ).

Marginal likelihood of the data by law of total probability

L(λ) = fλ(x) =
∫

fλ(x ,b) db,

which we would like to maximise to find the MLE λ̂.
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Marginal ML

l(b, λ)

b

l(b
, λ

)
L(b, λ)

b

L(
b,

 λ
)
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Marginal ML
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Area: 0.57

In reality, this integral is intractable!
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What can we do?
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The Laplace approximation

• find the mode (in b) of the joint log-likelihood

ℓj(b, λ) = −k

2
log(2π) +

1

2
log det(λS)+ ℓ(b)− 1

2
λb⊺Sb

by penalised ML

• second-order Taylor approximation around the mode:

ℓapprox(b, λ) = ℓj(b̂, λ)−
1

2
(b − b̂)⊺J(λ)(b − b̂),

where J(λ) = −∇2ℓj(b̂, λ) is the (negative) Hessian of ℓj(b, λ) w.r.t. b at b̂(λ).
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• now exponentiate to obtain likelihood and integrate out b

exp
(
ℓj(b̂, λ)

)
·
∫

exp
(
−1

2
(b − b̂)⊺J(λ)(b − b̂)

)
db

• right side is a Gaussian integral and equals

(2π)k/2 · det(J(λ))−1/2

• hence, approximate marginal log-likelihood becomes

ℓ(λ) ≈ ℓj(b̂, λ) +
k

2
log(2π)− 1

2
log det(J(λ))
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• typically good approximation because large values dominate the integral

• shape of the likelihood becomes more and more Gaussian as n → ∞
• but each evaluation of marginal log-likelihood requires inner optimisation w.r.t. b
→ leads to nested optimisation in general
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Optimising the marginal likelihood

Schellhase and Kauermann (2012) start with the (approximate) marginal log-likelihood

ℓ(λ) ≈ ℓj(b̂, λ) +
k

2
log(2π)− 1

2
log det

(
J(λ)

)
.

Writing out our joint log-likelihood, we have as our marginal log-likelihood

ℓ(λ) ≈ −k

2
log(2π) +

1

2
log det(λS) + ℓ(b̂)− 1

2
λb̂⊺Sb̂ +

k

2
log(2π)− 1

2
log det

(
J(λ)

)
,

which we can now (partially) differentiate w.r.t. λ
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Optimising the marginal likelihood

∂

∂λ

(1
2
log det(λS)

)
=

∂

∂λ

(1
2
log

(
λk det(S)

))
=

∂

∂λ

(k
2
log(λ) +

1

2
log det(S)

)
=

k

2λ

∂

∂λ

(
−1

2
λb̂⊺Sb̂

)
= −1

2
b̂⊺Sb̂

∂

∂λ

(
−1

2
log det

(
J(λ)

))
= −1

2
tr
(
J(λ)−1S

)
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Optimising the marginal likelihood

Hence in total
∂ℓ(λ)

∂λ
≈ −1

2
b̂⊺Sb̂ +

k

2λ
− 1

2
tr
(
J(λ)−1S

)
,

from which we can construct the estimating equation (omitting the details)

λ =
tr
(
J(λ)−1J(λ = 0)

)
b̂⊺Sb̂

=
dof(λ)

b̂⊺Sb̂
.

which yields the iterative procedure:

1. fit model via penalised ML

2. calculate Hessian at optimum

3. update penalty strength

4. repeat 1.-3. until convergence
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• first try → worked much better than CV or AIC/ BIC, requiring only a few iterations
for convergence (∼ 20 compared to hundreds or thousands for grid search)

• but my situation is more complicated:

• fixed effects
• multiple penalties

• So why did it work??
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The full setting

ℓp(a,b;λ) = ℓ(a,b)− 1

2

∑
i

λib
⊺
i Sbi

• fixed effects a
• multiple random effects b = (b1, . . . ,bp)

bi ∼ N (0,S−1/λi )

Problem: If we integrate out b, marginal likelihood is more complicated beause of a.

Solution: Assume a ∼ N (0,∞) and integrate out both a and b → restricted maximum
likelihood (REML), Laird and Ware, 1982
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Quasi REML

Then, marginal log-likelihood is a function of λ = (λ1, . . . , λp).

Partially differentiating w.r.t. λi yields very similar result:

λi =
tr
([

J(λ)−1J(λ = 0)
]
ii

)
b̂⊺
i Sb̂i

=
dof(λi )

b̂⊺
i Sb̂i

Yields the same iterative procedure: model fitting via penalised ML and updating
penalty strength.

→ smoothness selection procedure that makes nonparametric HMMs feasible!
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RTMB enters the picture

Here comes RTMB (Kristensen, 2024) with automatic differentiation, natively

supporting the full Laplace approximation for models written in plain R code

R
</>

+

*

e^

…
Chain

rule

C++
</>
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RTMB enters the picture

So did we gain anything?

• with RTMB (for inner optimisation), possible to implement qreml() very generally

• user only needs to specify penalised negative log-likelihood

• qREML + AD → efficiency skyrocketed!
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Practical usage

library(LaMa)

pnll <- function(par){ # penalised negative log-likelihood

... # computing the negative log-likelihood

nll + penalty(splinePars, S, lambda)

}

par <- list(..., splinePars = matrix(0, 2, 10)) # parameter list

dat <- list(..., S = S, lambda = rep(100, 2)) # data list

mod <- qreml(pnll, par, dat, random = "splinePars")

41 / 47



Practical usage

library(LaMa)

pnll <- function(par){ # penalised negative log-likelihood

... # computing the negative log-likelihood

nll + penalty(splinePars, S, lambda)

}

par <- list(..., splinePars = matrix(0, 2, 10)) # parameter list

dat <- list(..., S = S, lambda = rep(100, 2)) # data list

mod <- qreml(pnll, par, dat, random = "splinePars")

41 / 47



Practical usage

library(LaMa)

pnll <- function(par){ # penalised negative log-likelihood

... # computing the negative log-likelihood

nll + penalty(splinePars, S, lambda)

}

par <- list(..., splinePars = matrix(0, 2, 10)) # parameter list

dat <- list(..., S = S, lambda = rep(100, 2)) # data list

mod <- qreml(pnll, par, dat, random = "splinePars")

41 / 47



Real-data example
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Bull sharks (Byrnes et al., 2023)

• Western Australia, extreme seasonal changes

• seven bull sharks tagged (14K observations)

• temperature, depth, and acceleration data

• response: overall dynamic body acceleration

• 2-state HMM: low and high activity

• ODBA
(t)
k | {St = i} ∼ β

(i)
k + sk(timet), k = 1, . . . , 7 (ectotherms)

• γ
(t)
ij ∼ s(todt) + AvgTempt ∗ s(todt) (parametric in original paper)

• 11 smooths in total, 162 parameters

• model fit takes ∼ 5 minutes (32 penalised fits until convergence)
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Bull sharks (Byrnes et al., 2023)
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Bull sharks (Byrnes et al., 2023)
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Concluding remarks

• qREML is (of course) much more generally applicable than just to HMMs

• you can find qreml() in the package LaMa , vignette “Penalised splines”

• models with i.i.d. random effects can be fitted using the same approach

• RTMB will become an extremely valuable tool for fitting complex models
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