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HMM — model formulation
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HMM — model formulation

HNON2
O )

e every observation x; is generated by one of N possible distributions fi, ..., fi
e hidden state process selects which distribution is active at time t

e state process is a Markov chain
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Reminder: Markov chains

Markovian state process is fully characterised by the initial distribution
W = (Pr(S1 =1),...,Pr(S1 = N))

and the transition probabilities

’Y,S-t) =Pr(Sep1 =[5 =),

which we summarise in the transition probability matrix (t.p.m.)

r® = (ijt))iFlw-”V'
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Estimating HMMs

We can efficiently calculate the HMM likelihood using the forward algorithm

£(0) = sV P )TOPG)T@ .. (T p(x7)1,

where P(x;) = diag(fi(xc), ..., fn(xt)).
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where P(x;) = diag(fi(xc), ..., fn(xt)).

With some adjustments, we can also calculate the log-likelihood ¢(8) to avoid numerical
underflow — optimise in R using standard optimisers like nlm() or optim() .
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Estimating HMMs

We can efficiently calculate the HMM likelihood using the forward algorithm

£(6) = 6V P(x)TWP()T® ... TTVP(x7)1,
where P(x;) = diag(fi(xc), ..., fn(xt)).

With some adjustments, we can also calculate the log-likelihood ¢(8) to avoid numerical
underflow — optimise in R using standard optimisers like nlm() or optim() .

These approximate the gradient via finite differencing.

Af(x)

6/47



Why nonparametrics?

e component distributions typically selected from parametric family
— difficult as we can't do state-specific EDA
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Why nonparametrics?

e component distributions typically selected from parametric family
— difficult as we can't do state-specific EDA

e potential covariate effects typically modelled using linear predictors
— may result in us missing interesting relationships
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Why nonparametrics?

= complicated

— often substantial lack of fit
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Why nonparametrics?

Misspecification will be compensated by more states but this complicates interpretation.

Selecting the Number of States in Hidden
Markov Models: Pragmatic Solutions
Ilustrated Using Animal Movement

Jennifer POHLE, Roland LANGROCK, Floris M. van BEEST, and
Niels Martin SCHMIDT
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Why nonparametrics?

Misspecification will be compensated by more states but this complicates interpretation.

Selecting the Number of States in Hidden
Markov Models: Pragmatic Solutions
Ilustrated Using Animal Movement

Jennifer POHLE, Roland LANGROCK, Floris M. van BEEST, and
Niels Martin SCHMIDT

Obvious alternative: nonparametric approach using penalised splines
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An informal introduction to penalised splines

Idea: Perform basis expansion in x and represent smooth function s(x) as a linear
combination of fixed basis functions By (x)

S(X) = blBl(X) -+ szz(X) + ...+ kak(X) = bTB(X)

PN
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For example, when using B-Splines By(x) is a piecewise polynomial

and zero outside the outer knots.
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Approximate the true function with a sufficient number of basis functions:
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Approximate the true function with a sufficient number of basis functions:

AN

QY

As s should not be too wiggly, we add the penalty

)\/s”(x)2 dx
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Approximate the true function with a sufficient number of basis functions:

AN

QY

As s should not be too wiggly, we add the penalty
A / s”(x)? dx = \bTSb,

where S is fixed penalty matrix with entries S; = [ B/'(x)B](x) dx.
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Nonparametric emission distributions
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Langrock, Kneib, Sohn, and DeRuiter, 2015
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Markov-switching GAM
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Langrock, Kneib, Glennie, and Michelot, 2017
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Smooth covariate effects on the state process
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Feldmann et al., 2023
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So this is where my spline adventure begins...

e fairly applied project: 'ylg.t)

e implementation with fixed penalisation
straightforward

~ s(time of day, day)

I'M.GOING ONAN
ADVENTURE

wedenerator.net
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So this is where my spline adventure begins...

e fairly applied project: 'ylg.t)

e implementation with fixed penalisation
straightforward

~ s(time of day, day)

-

I'M.GOING ONAN
ADVENTURE

wedenerator.net

But how to find a good penalty strength??
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Smoothness selection for penalised splines

JOURNAL ARTICLE
Nonparametric Inference in Hidden Markov Models
Using P-Splines @
Roland Langrock &, Thomas Kneib, Alexander Sohn, Stacy L. DeRuiter

Biometrics, Volume 71, Issue 2, June 2015, Pages 520-528,
https://doi.org/10.1111/biom.12282
Published: 13 January2015 Article history v

Markov-switching generalized additive models

Roland Langrock! . Thomas Kneib? - Richard Glennie® - Théo Michelot*
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SPECIAL ISSUE ARTICLE =~ @& Full Access

Spline-based nonparametric inference in general state-
switching models

Roland Langrock i« Timo Adam, Vianey Leos-Barajas, Sina Mews, David L. Miller,
Yannis P. Papastamatiou
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Smoothness selection for penalised splines

e cross-validation, AIC/BIC or subjective choice
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Smoothness selection for penalised splines

cross-validation, AIC/BIC or subjective choice

grid search — curse of dimensionality

painfully slow and (for me) under-smoothed results

e in general, underdeveloped, most work done for GLMMs and GAMs

Ideally: define the penalised log-likelihood — automatic smoothness-selection
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Smoothness selection for penalised splines

Comput Stat (2012) 27:757-777
DOI 10.1007/s00180-011-0289-6

ORIGINAL PAPER

Density estimation and comparison with a penalized
mixture approach

Christian Schellhase - Goran Kauermann

e splines as random effects?
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Smoothness selection for penalised splines

Comput Stat (2012) 27:757-777
DOI 10.1007/s00180-011-0289-6

ORIGINAL PAPER

Density estimation and comparison with a penalized
mixture approach

Christian Schellhase - Goran Kauermann

e splines as random effects?

e Laplace approximation?
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Why are splines random effects?
Simple setting involving one penalised spline and no unpenalised parameters:

lp(b; \) = ¢(b) — %AbTSb,
e coefficients b = (b, ..., by)

e fixed penalty matrix S

e penalty strength A
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Why are splines random effects?
Simple setting involving one penalised spline and no unpenalised parameters:

0,(b; \) = ((b) — %AbTSb,

e coefficients b = (b, ..., by)
e fixed penalty matrix S

e penalty strength A

Penalised likelihood function

Ly(b; \) = L(b) - exp(—%)\bTSb)
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We see that 1
exp(—E/\bTSb)

is proportional to a multivariate Gaussian density.

lignoring potential issues with invertibility here
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We see that 1
exp(— EAbTSb)

is proportional to a multivariate Gaussian density.

We might as well assume b ~ N(0,S71/)) and add the missing normalisation constant!

Li(b;\) = L(b) - (27) /7 det(\S)H/? exp(—%)\bTSb)
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We see that 1
exp(— 5/\bTSb)

is proportional to a multivariate Gaussian density.

We might as well assume b ~ N(0,S71/)) and add the missing normalisation constant!
—k/2 1/2 1
Lj(b;\) = L(b) - (27) /= det(\S)" exp(—EAbTSb)
giving the joint log-likelihood

k 1 1
6(b ) = U(b) — - log(27) + - log det(AS) — ZAbTSb

lignoring potential issues with invertibility here
22 /47



How to estimate models with random effects?

Joint likelihood of the data and the random effect as a function of A
i(x, b) = f(x | b) - f\(b),

with f(x | b) = £(b) and f(b) ~ N(0, S1/).
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How to estimate models with random effects?

Joint likelihood of the and the random effect as a function of \
fA(x, b) = f(x | b) - fA(b),
with f(x | b) = £(b) and f\(b) NN(O,S’I/)\).

Marginal likelihood of the data by law of total probability

£\ = f(x) = / .(x, b) db,

23 /47



How to estimate models with random effects?

Joint likelihood of the and the random effect as a function of A
A(x, b) = (x| b) - f(b),

with f(x | b) = £(b) and fy(b) ~ N(0,S71/)).

Marginal likelihood of the data by law of total probability

£\ = f(x) = / .(x, b) db,

which we would like to maximise to find the MLE ).
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Marginal ML

I(b, A) L(b,A)

I(b, A)
L(b,A)
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Marginal ML

I(b, A) L(b,A)

B Area: 0.57

I(b, A)
L(b,A)
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Marginal ML

I(b, A) L(b,A)

B Area: 0.57

I(b, A)
L(b,A)

In reality, this integral is intractable!
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What can we do?
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What can we do?

BRACE YOURSELF
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The Laplace approximation

e find the mode (in b) of the joint log-likelihood
k 1 1
li(b,\) = ) log(27) + 5 log det(AS)+ ¢(b) — §AbTSb

by penalised ML
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The Laplace approximation

e find the mode (in b) of the joint log-likelihood
k 1 1
li(b,\) = ) log(27) + 5 log det(AS)+ ¢(b) — §AbTSb

by penalised ML

e second-order Taylor approximation around the mode:
. 1 . .
Capprox(b; A) = £j(b, A) = 5 (b= b)TJ(A)(b - b),

where J(\) = —V2€j(5, A) is the (negative) Hessian of £;(b,\) w.r.t. b at b()\).
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I(b, \)

I(b, \)

L(b,A)

L(b,2)
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e now exponentiate to obtain likelihood and integrate out b

A~ ~

exp(¢j(b,N)) - /exp(—;(b —b)TJ(\)(b — b)) db
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e now exponentiate to obtain likelihood and integrate out b

A~ ~

exp(¢j(b,N)) - /exp(—;(b —b)TJ(\)(b — b)) db

e right side is a Gaussian integral and equals

(2m)k/2 - det(J(N)) /2
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e now exponentiate to obtain likelihood and integrate out b

A~ ~

exp(¢j(b,N)) - /exp(—;(b —b)TJ(\)(b — b)) db

e right side is a Gaussian integral and equals

(2m)k/2 - det(J(N)) /2

e hence, approximate marginal log-likelihood becomes
A k 1
() = £i(b, \) + 5 log(27m) — 3 log det(J()))
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I(b, \)

I(b, \)

L(b,A)

L(b,2)

Area: 0.58
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W

I love Taylor il me too
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e typically good approximation because large values dominate the integral

32/47



e typically good approximation because large values dominate the integral

e shape of the likelihood becomes more and more Gaussian as n — oo
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e typically good approximation because large values dominate the integral
e shape of the likelihood becomes more and more Gaussian as n — oo

e but each evaluation of marginal log-likelihood requires inner optimisation w.r.t. b
— leads to nested optimisation in general
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Optimising the marginal likelihood

Schellhase and Kauermann (2012) start with the (approximate) marginal log-likelihood

0\ ~ (;(b, ) + g log(27) — % log det(J(N)).

33/47



Optimising the marginal likelihood

Schellhase and Kauermann (2012) start with the (approximate) marginal log-likelihood
. k 1
(N) = (b)) + 5 log(27) — 5 log det(J(N)).
Writing out our joint log-likelihood, we have as our marginal log-likelihood

k 1 A Ao~k 1
I(\) ~ -5 log(27) + 5 log det(AS) + ¢(b) — Z\bTSb + > log(27) — > log det(J(X)),

N —
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Optimising the marginal likelihood

Schellhase and Kauermann (2012) start with the (approximate) marginal log-likelihood
n k 1
U(N) = (b, )\)+ 5 log(27) — 5 log det(J(N)).
Writing out our joint log-likelihood, we have as our marginal log-likelihood
k 1 a 1o~ .~ k 1
0N =~ —5 log(27) + 5 log det(AS) + 4(b) — EAbTSb + 3 log(27) — 5 log det(J(X)),

which we can now (partially) differentiate w.r.t. A
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Optimising the marginal likelihood

%(% log det(AS)) = %(% log (A¥ det(S))) - (%(g log(\) + % log det(S)) - %

3447



Optimising the marginal likelihood

Hence in total 200 ) p )
- _7AT A - -1
i 2b Sb+ o\ 2tr(J(/\) S),
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Optimising the marginal likelihood

Hence in total (%()\) p )
_ZpT S = -1
i b Sb+ o\ 2tr(J(/\) S),

from which we can construct the estimating equation (omitting the details)
tr( (A1 )) _dof(A)

A= ( —
bTSh brSh
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Optimising the marginal likelihood

Hence in total (%()\) p )
_ZpT S = -1
i b Sb+ o\ 2tr(J(/\) S),

from which we can construct the estimating equation (omitting the details)
tr( (A1 )) _dof(A)

A= ( —
bTSh brSh

which yields the iterative procedure:
1. fit model via penalised ML
2. calculate Hessian at optimum
3. update penalty strength
4

. repeat 1.-3. until convergence
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e first try — worked much better than CV or AIC/ BIC, requiring only a few iterations
for convergence (~ 20 compared to hundreds or thousands for grid search)
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e first try — worked much better than CV or AIC/ BIC, requiring only a few iterations
for convergence (~ 20 compared to hundreds or thousands for grid search)
e but my situation is more complicated:

o fixed effects
« multiple penalties
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e first try — worked much better than CV or AIC/ BIC, requiring only a few iterations
for convergence (~ 20 compared to hundreds or thousands for grid search)
e but my situation is more complicated:

o fixed effects
« multiple penalties

e So why did it work??
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The full setting

(o(a,b;\) = {(a,b) — % S AbISh,

o fixed effects a

e multiple random effects b = (b, ..., bp)

bi ~ N(0,571/);)

Problem: If we integrate out b, marginal likelihood is more complicated beause of a.
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The full setting

(o(a,b;\) = {(a,b) — % S AbISh,

o fixed effects a

e multiple random effects b = (b, ..., bp)

bi ~ N(0,571/);)

Problem: If we integrate out b, marginal likelihood is more complicated beause of a.

Solution: Assume a ~ N(0,c0) and integrate out both a and b — restricted maximum
likelihood (REML), Laird and Ware, 1982
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Quasi REML

Then, marginal log-likelihood is a function of A = (Aq,...,Ap).
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Partially differentiating w.r.t. A; yields very similar result:

o ) IO =0)])  dof(A)
’ bTSh; bTSh;
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Quasi REML

Then, marginal log-likelihood is a function of A = (Aq,...,Ap).

Partially differentiating w.r.t. A; yields very similar result:

tr([J()‘)_lJ(/\ - 0)] ii) _ dof(Ay)

A= M —
brSh; bTSh;

Yields the same iterative procedure: model fitting via penalised ML and updating
penalty strength.
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Quasi REML

Then, marginal log-likelihood is a function of A = (Aq,...,Ap).

Partially differentiating w.r.t. A; yields very similar result:

tr([J()‘)_lJ(/\ - 0)] ii) _ dof(Ay)

A= M —
brSh; bTSh;

Yields the same iterative procedure: model fitting via penalised ML and updating
penalty strength.

— smoothness selection procedure that makes nonparametric HMMs feasible!
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RTMB enters the picture

Here comes RTMB (Kristensen, 2024) with automatic differentiation, natively

supporting the full Laplace approximation for models written in plain R code

R C++
</> </>

el

Chain
rule
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RTMB enters the picture

So did we gain anything?
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RTMB enters the picture

So did we gain anything?
e with RTMB (for inner optimisation), possible to implement gqreml() very generally
e user only needs to specify penalised negative log-likelihood
e qREML + AD — efficiency skyrocketed!
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Practical usage

library(LaMa)

pnll <- function(par){ # penalised negative log-likelihood
. # computing the negative log-likelihood
nll + penalty(splinePars, S, lambda)
}
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Practical usage

library(LaMa)

pnll <- function(par){ # penalised negative log-likelihood
. # computing the negative log-likelihood
nll + penalty(splinePars, S, lambda)
}

par <- list(..., splinePars = matrix(0, 2, 10)) # parameter list
dat <- list(..., S = S, lambda = rep(100, 2)) # data list
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Practical usage

library(LaMa)

pnll <- function(par){ # penalised negative log-likelihood
. # computing the negative log-likelihood
nll + penalty(splinePars, S, lambda)

}
par <- list(..., splinePars = matrix(0, 2, 10)) # parameter list
dat <- list(..., S = S, lambda = rep(100, 2)) # data list

mod <- greml(pnll, par, dat, random = "splinePars")

4147



Real-data example
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Bull sharks (Byrnes et al., 2023)

Western Australia, extreme seasonal changes

seven bull sharks tagged (14K observations)

temperature, depth, and acceleration data

response: overall dynamic body acceleration
2-state HMM: low and high activity
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Bull sharks (Byrnes et al., 2023)

e Western Australia, extreme seasonal changes
e seven bull sharks tagged (14K observations)
e temperature, depth, and acceleration data

e response: overall dynamic body acceleration
e 2-state HMM: low and high activity

o ODBAg(t) | {S: =i} ~ ﬁl(j) + sk(time;), k = 1,...,7 (ectotherms)
o %S.t) ~ s(tod;) + AvgTemp, * s(tod;) (parametric in original paper)
e 11 smooths in total, 162 parameters

e model fit takes ~ 5 minutes (32 penalised fits until convergence)
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Bull sharks (Byrnes et al., 2023)
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Bull sharks (Byrnes et al., 2023)
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Concluding remarks

e qREML is (of course) much more generally applicable than just to HMMs
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https://janoleko.github.io/LaMa
https://janoleko.github.io/LaMa/articles/Penalised_splines.html

Concluding remarks

qREML is (of course) much more generally applicable than just to HMMs

you can find qreml() in the package LaMa , vignette “Penalised splines”

models with i.i.d. random effects can be fitted using the same approach

RTMB will become an extremely valuable tool for fitting complex models
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