Efficient smoothness selection for nonparametric Markov-switching models via quasi restricted maximum likelihood

Jan-Ole Koslik

St Andrews, February 5, 2025

- PhD student in the Statistics and Data Analysis Group at Bielefeld University
- mostly working on hidden Markov models and their relatives

minutes

HMM — model formulation

• every observation x_t is generated by one of N possible distributions $f_1, ..., f_N$

HMM — model formulation

- every observation x_t is generated by one of N possible distributions $f_1, ..., f_N$
- hidden state process selects which distribution is active at time t

HMM — model formulation

- every observation x_t is generated by one of N possible distributions $f_1, ..., f_N$
- hidden state process selects which distribution is active at time t
- state process is a Markov chain

minutes

Reminder: Markov chains

Markovian state process is fully characterised by the initial distribution

$$\boldsymbol{\delta}^{(1)} = ig(\mathsf{Pr}(\mathcal{S}_1 = 1), \dots, \mathsf{Pr}(\mathcal{S}_1 = N)ig)$$

and the transition probabilities

$$\gamma_{ij}^{(t)} = \Pr(S_{t+1} = j \mid S_t = i),$$

which we summarise in the transition probability matrix (t.p.m.)

$$\boldsymbol{\Gamma}^{(t)} = (\gamma_{ij}^{(t)})_{i,j=1,\dots,N}.$$

Estimating HMMs

We can efficiently calculate the HMM likelihood using the forward algorithm

$$\mathcal{L}(\boldsymbol{ heta}) = \boldsymbol{\delta}^{(1)} \boldsymbol{P}(x_1) \boldsymbol{\Gamma}^{(1)} \boldsymbol{P}(x_2) \boldsymbol{\Gamma}^{(2)} \cdot \ldots \cdot \boldsymbol{\Gamma}^{(\mathcal{T}-1)} \boldsymbol{P}(x_{\mathcal{T}}) \mathbf{1},$$

where $\boldsymbol{P}(x_t) = \operatorname{diag}(f_1(x_t), \ldots, f_N(x_t)).$

Estimating HMMs

We can efficiently calculate the HMM likelihood using the forward algorithm

$$\mathcal{L}(\boldsymbol{\theta}) = \boldsymbol{\delta}^{(1)} \boldsymbol{P}(x_1) \boldsymbol{\Gamma}^{(1)} \boldsymbol{P}(x_2) \boldsymbol{\Gamma}^{(2)} \cdot \ldots \cdot \boldsymbol{\Gamma}^{(T-1)} \boldsymbol{P}(x_T) \mathbf{1},$$

where $P(x_t) = diag(f_1(x_t), ..., f_N(x_t)).$

With some adjustments, we can also calculate the **log-likelihood** $\ell(\theta)$ to avoid numerical underflow \rightarrow optimise in R using standard optimisers like nlm() or optim().

Estimating HMMs

We can efficiently calculate the HMM likelihood using the forward algorithm

$$\mathcal{L}(\boldsymbol{\theta}) = \delta^{(1)} \boldsymbol{P}(x_1) \Gamma^{(1)} \boldsymbol{P}(x_2) \Gamma^{(2)} \cdot \ldots \cdot \Gamma^{(T-1)} \boldsymbol{P}(x_T) \mathbf{1},$$

where $P(x_t) = diag(f_1(x_t), ..., f_N(x_t)).$

With some adjustments, we can also calculate the **log-likelihood** $\ell(\theta)$ to avoid numerical underflow \rightarrow optimise in R using standard optimisers like nlm() or optim().

These approximate the gradient via finite differencing.

• component distributions typically selected from **parametric** family \rightarrow difficult as we can't do state-specific EDA

- component distributions typically selected from parametric family
 → difficult as we can't do state-specific EDA
- potential covariate effects typically modelled using **linear** predictors \rightarrow may result in us missing interesting relationships

= complicated

 \rightarrow often substantial lack of fit

Misspecification will be compensated by more states but this complicates interpretation.

Selecting the Number of States in Hidden Markov Models: Pragmatic Solutions Illustrated Using Animal Movement

Jennifer POHLE, Roland LANGROCK, Floris M. van BEEST, and Niels Martin SCHMIDT

Misspecification will be compensated by more states but this complicates interpretation.

Selecting the Number of States in Hidden Markov Models: Pragmatic Solutions Illustrated Using Animal Movement

Jennifer POHLE, Roland LANGROCK, Floris M. van BEEST, and Niels Martin SCHMIDT

Obvious alternative: nonparametric approach using penalised splines

An informal introduction to penalised splines

Idea: Perform **basis expansion** in x and represent smooth function s(x) as a linear combination of fixed basis functions $B_k(x)$

$$s(x) = b_1B_1(x) + b_2B_2(x) + \ldots + b_kB_k(x) = \boldsymbol{b}^{\mathsf{T}}\boldsymbol{B}(x)$$

For example, when using **B-Splines** $B_k(x)$ is a **piecewise** polynomial

and zero outside the outer knots.

Approximate the true function with a sufficient number of basis functions:

Approximate the true function with a sufficient number of basis functions:

As *s* should not be too **wiggly**, we add the penalty

$$\lambda \int s''(x)^2 dx$$

Approximate the true function with a sufficient number of basis functions:

As *s* should not be too **wiggly**, we add the penalty

$$\lambda \int s''(x)^2 \ dx = \lambda b^{\mathsf{T}} S b,$$

where **S** is fixed penalty matrix with entries $S_{ij} = \int B_i''(x)B_j''(x) dx$.

Nonparametric emission distributions

Langrock, Kneib, Sohn, and DeRuiter, 2015

Markov-switching GAM

Langrock, Kneib, Glennie, and Michelot, 2017

Smooth covariate effects on the state process

Feldmann et al., 2023

So this is where my spline adventure begins...

- fairly applied project: $\gamma_{ii}^{(t)} \sim$ s(time of day, day)
- implementation with **fixed** penalisation straightforward

So this is where my spline adventure begins...

- fairly applied project: $\gamma_{ii}^{(t)} \sim$ s(time of day, day)
- implementation with **fixed** penalisation straightforward

But how to find a good **penalty strength**??

JOURNAL ARTICLE

Nonparametric Inference in Hidden Markov Models Using P-Splines @

Roland Langrock 🖾, <u>Thomas Kneib</u>, Alexander Sohn, Stacy L. DeRuiter

Biometrics, Volume 71, Issue 2, June 2015, Pages 520–528, https://doi.org/10.1111/biom.12282 Published: 13 January 2015 Article history ▼

Markov-switching generalized additive models

Roland Langrock¹ · Thomas Kneib² · Richard Glennie³ · Théo Michelot⁴

SPECIAL ISSUE ARTICLE 🔂 Full Access

Spline-based nonparametric inference in general stateswitching models

Roland Langrock 🔀, Timo Adam, Vianey Leos-Barajas, Sina Mews, David L. Miller, Yannis P. Papastamatiou

• cross-validation, AIC/BIC or subjective choice

- cross-validation, AIC/BIC or subjective choice
- grid search \rightarrow curse of dimensionality
- painfully slow and (for me) under-smoothed results

- cross-validation, AIC/BIC or subjective choice
- grid search \rightarrow curse of dimensionality
- painfully slow and (for me) under-smoothed results
- in general, underdeveloped, most work done for GLMMs and GAMs

- cross-validation, AIC/BIC or subjective choice
- grid search \rightarrow curse of dimensionality
- painfully slow and (for me) under-smoothed results
- in general, underdeveloped, most work done for GLMMs and GAMs

Ideally: define the penalised log-likelihood \rightarrow automatic smoothness-selection

Comput Stat (2012) 27:757–777 DOI 10.1007/s00180-011-0289-6

ORIGINAL PAPER

Density estimation and comparison with a penalized mixture approach

Christian Schellhase · Göran Kauermann

• splines as random effects?

Comput Stat (2012) 27:757–777 DOI 10.1007/s00180-011-0289-6

ORIGINAL PAPER

Density estimation and comparison with a penalized mixture approach

Christian Schellhase · Göran Kauermann

- splines as random effects?
- Laplace approximation?

Why are splines random effects?

Simple setting involving one penalised spline and no unpenalised parameters:

$$\ell_{\rho}(\boldsymbol{b};\lambda) = \ell(\boldsymbol{b}) - \frac{1}{2}\lambda \boldsymbol{b}^{\mathsf{T}} \boldsymbol{S} \boldsymbol{b},$$

• coefficients
$$\boldsymbol{b} = (b_1, \dots, b_k)$$

- fixed penalty matrix \boldsymbol{S}
- penalty strength λ

Why are splines random effects?

Simple setting involving one penalised spline and no unpenalised parameters:

$$\ell_{\rho}(\boldsymbol{b};\lambda) = \ell(\boldsymbol{b}) - \frac{1}{2}\lambda \boldsymbol{b}^{\mathsf{T}} \boldsymbol{S} \boldsymbol{b},$$

- coefficients $\boldsymbol{b} = (b_1, \ldots, b_k)$
- fixed penalty matrix \boldsymbol{S}
- penalty strength λ

Penalised likelihood function

$$\mathcal{L}_{p}(oldsymbol{b};\lambda) = \mathcal{L}(oldsymbol{b}) \cdot \expig(-rac{1}{2}\lambdaoldsymbol{b}^{\intercal}oldsymbol{S}oldsymbol{b}ig)$$
We see that

$$\exp\left(-\frac{1}{2}\lambda \boldsymbol{b}^{\mathsf{T}}\boldsymbol{S}\boldsymbol{b}\right)$$

is proportional to a multivariate Gaussian density.

¹ignoring potential issues with invertibility here

We see that

$$\exp\left(-\frac{1}{2}\lambda \boldsymbol{b}^{\mathsf{T}}\boldsymbol{S}\boldsymbol{b}
ight)$$

is proportional to a multivariate Gaussian density.

We might as well assume $m{b}\sim\mathcal{N}(m{0},m{S}^{-1}/\lambda)$ and add the missing normalisation constant^1

$$\mathcal{L}_{j}(\boldsymbol{b};\lambda) = \mathcal{L}(\boldsymbol{b}) \cdot (2\pi)^{-k/2} \det(\lambda \boldsymbol{S})^{1/2} \exp\left(-\frac{1}{2}\lambda \boldsymbol{b}^{\mathsf{T}} \boldsymbol{S} \boldsymbol{b}\right)$$

¹ignoring potential issues with invertibility here

We see that

$$\exp\left(-\frac{1}{2}\lambda \boldsymbol{b}^{\mathsf{T}}\boldsymbol{S}\boldsymbol{b}
ight)$$

is proportional to a multivariate Gaussian density.

We might as well assume $m{b}\sim\mathcal{N}(m{0},m{S}^{-1}/\lambda)$ and add the missing normalisation constant^1

$$\mathcal{L}_{j}(\boldsymbol{b};\lambda) = \mathcal{L}(\boldsymbol{b}) \cdot (2\pi)^{-k/2} \det(\lambda \boldsymbol{S})^{1/2} \exp\left(-\frac{1}{2}\lambda \boldsymbol{b}^{\mathsf{T}} \boldsymbol{S} \boldsymbol{b}\right)$$

giving the joint log-likelihood

$$\ell_j(\boldsymbol{b}; \lambda) = \ell(\boldsymbol{b}) - \frac{k}{2}\log(2\pi) + \frac{1}{2}\log\det(\lambda \boldsymbol{S}) - \frac{1}{2}\lambda \boldsymbol{b}^{\mathsf{T}} \boldsymbol{S} \boldsymbol{b}$$

¹ignoring potential issues with invertibility here

How to estimate models with random effects?

Joint likelihood of the data and the random effect as a function of λ

 $f_{\lambda}(\mathbf{x}, \mathbf{b}) = f(\mathbf{x} \mid \mathbf{b}) \cdot f_{\lambda}(\mathbf{b}),$

with $f(\boldsymbol{x} \mid \boldsymbol{b}) = \mathcal{L}(\boldsymbol{b})$ and $f_{\lambda}(\boldsymbol{b}) \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{S}^{-1}/\lambda)$.

How to estimate models with random effects?

Joint likelihood of the data and the random effect as a function of λ

 $f_{\lambda}(\mathbf{x}, \mathbf{b}) = f(\mathbf{x} \mid \mathbf{b}) \cdot f_{\lambda}(\mathbf{b}),$

with $f(\boldsymbol{x} \mid \boldsymbol{b}) = \mathcal{L}(\boldsymbol{b})$ and $f_{\lambda}(\boldsymbol{b}) \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{S}^{-1}/\lambda)$.

Marginal likelihood of the data by law of total probability

$$\mathcal{L}(\lambda) = f_{\lambda}(\boldsymbol{x}) = \int f_{\lambda}(\boldsymbol{x}, \boldsymbol{b}) d\boldsymbol{b},$$

How to estimate models with random effects?

Joint likelihood of the data and the random effect as a function of λ

 $f_{\lambda}(\mathbf{x}, \mathbf{b}) = f(\mathbf{x} \mid \mathbf{b}) \cdot f_{\lambda}(\mathbf{b}),$

with $f(\boldsymbol{x} \mid \boldsymbol{b}) = \mathcal{L}(\boldsymbol{b})$ and $f_{\lambda}(\boldsymbol{b}) \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{S}^{-1}/\lambda)$.

Marginal likelihood of the data by law of total probability

$$\mathcal{L}(\lambda) = f_{\lambda}(\boldsymbol{x}) = \int f_{\lambda}(\boldsymbol{x}, \boldsymbol{b}) d\boldsymbol{b},$$

which we would like to maximise to find the **MLE** $\hat{\lambda}$.

Marginal ML

Marginal ML

Marginal ML

In reality, this integral is intractable!

What can we do?

What can we do?

The Laplace approximation

• find the mode (in **b**) of the joint log-likelihood

$$\ell_j(\boldsymbol{b},\lambda) = -\frac{k}{2}\log(2\pi) + \frac{1}{2}\log\det(\lambda S) + \ell(\boldsymbol{b}) - \frac{1}{2}\lambda \boldsymbol{b}^{\mathsf{T}}\boldsymbol{S}\boldsymbol{b}$$

by penalised ML

The Laplace approximation

• find the mode (in **b**) of the joint log-likelihood

$$\ell_j(\boldsymbol{b},\lambda) = -\frac{k}{2}\log(2\pi) + \frac{1}{2}\log\det(\lambda S) + \ell(\boldsymbol{b}) - \frac{1}{2}\lambda \boldsymbol{b}^{\mathsf{T}}\boldsymbol{S}\boldsymbol{b}$$

by penalised ML

• second-order Taylor approximation around the mode:

$$\ell_{approx}(\boldsymbol{b},\lambda) = \ell_j(\hat{\boldsymbol{b}},\lambda) - \frac{1}{2}(\boldsymbol{b}-\hat{\boldsymbol{b}})^{\mathsf{T}}\boldsymbol{J}(\lambda)(\boldsymbol{b}-\hat{\boldsymbol{b}}),$$

where $\boldsymbol{J}(\lambda) = -\nabla^2 \ell_j(\hat{\boldsymbol{b}}, \lambda)$ is the (negative) Hessian of $\ell_j(\boldsymbol{b}, \lambda)$ w.r.t. \boldsymbol{b} at $\hat{\boldsymbol{b}}(\lambda)$.

• now exponentiate to obtain likelihood and integrate out $m{b}$

$$\exp(\ell_j(\hat{\boldsymbol{b}},\lambda)) \cdot \int \exp(-\frac{1}{2}(\boldsymbol{b}-\hat{\boldsymbol{b}})^{\mathsf{T}}\boldsymbol{J}(\lambda)(\boldsymbol{b}-\hat{\boldsymbol{b}})) d\boldsymbol{b}$$

• now exponentiate to obtain likelihood and integrate out ${m b}$

$$\exp(\ell_j(\hat{\boldsymbol{b}},\lambda)) \cdot \int \exp(-\frac{1}{2}(\boldsymbol{b}-\hat{\boldsymbol{b}})^{\mathsf{T}}\boldsymbol{J}(\lambda)(\boldsymbol{b}-\hat{\boldsymbol{b}})) d\boldsymbol{b}$$

• right side is a Gaussian integral and equals

$$(2\pi)^{k/2} \cdot \det(\boldsymbol{J}(\lambda))^{-1/2}$$

• now exponentiate to obtain likelihood and integrate out ${m b}$

$$\exp(\ell_j(\hat{\boldsymbol{b}},\lambda)) \cdot \int \exp(-\frac{1}{2}(\boldsymbol{b}-\hat{\boldsymbol{b}})^{\intercal} \boldsymbol{J}(\lambda)(\boldsymbol{b}-\hat{\boldsymbol{b}})) d\boldsymbol{b}$$

• right side is a Gaussian integral and equals

$$(2\pi)^{k/2} \cdot \det(\boldsymbol{J}(\lambda))^{-1/2}$$

• hence, approximate marginal log-likelihood becomes

$$\ell(\lambda) pprox \ell_j(\hat{m{b}}, \lambda) + rac{k}{2}\log(2\pi) - rac{1}{2}\log\det(m{J}(\lambda))$$

30 / 47

• typically good approximation because large values dominate the integral

- typically good approximation because large values dominate the integral
- shape of the likelihood becomes more and more Gaussian as $n o \infty$

- typically good approximation because large values dominate the integral
- shape of the likelihood becomes more and more Gaussian as $n
 ightarrow \infty$
- but each evaluation of marginal log-likelihood requires inner optimisation w.r.t. $b \rightarrow$ leads to nested optimisation in general

Schellhase and Kauermann (2012) start with the (approximate) marginal log-likelihood

$$\ell(\lambda) \approx \ell_j(\hat{\boldsymbol{b}}, \lambda) + \frac{k}{2}\log(2\pi) - \frac{1}{2}\log\det(\boldsymbol{J}(\lambda)).$$

Schellhase and Kauermann (2012) start with the (approximate) marginal log-likelihood

$$\ell(\lambda) \approx \ell_j(\hat{\boldsymbol{b}}, \lambda) + rac{k}{2}\log(2\pi) - rac{1}{2}\log\det(\boldsymbol{J}(\lambda)).$$

Writing out our joint log-likelihood, we have as our marginal log-likelihood

$$\ell(\lambda) \approx -\frac{k}{2}\log(2\pi) + \frac{1}{2}\log\det(\lambda S) + \ell(\hat{\boldsymbol{b}}) - \frac{1}{2}\lambda\hat{\boldsymbol{b}}^{\mathsf{T}}\boldsymbol{S}\hat{\boldsymbol{b}} + \frac{k}{2}\log(2\pi) - \frac{1}{2}\log\det(\boldsymbol{J}(\lambda)),$$

Schellhase and Kauermann (2012) start with the (approximate) marginal log-likelihood

$$\ell(\lambda) \approx \ell_j(\hat{\boldsymbol{b}}, \lambda) + rac{k}{2}\log(2\pi) - rac{1}{2}\log\det(\boldsymbol{J}(\lambda)).$$

Writing out our joint log-likelihood, we have as our marginal log-likelihood

$$\ell(\lambda) \approx -\frac{k}{2}\log(2\pi) + \frac{1}{2}\log\det(\lambda S) + \ell(\hat{\boldsymbol{b}}) - \frac{1}{2}\lambda\hat{\boldsymbol{b}}^{\mathsf{T}}\boldsymbol{S}\hat{\boldsymbol{b}} + \frac{k}{2}\log(2\pi) - \frac{1}{2}\log\det(\boldsymbol{J}(\lambda)),$$

which we can now (partially) differentiate w.r.t. λ

$$\frac{\partial}{\partial \lambda} \Big(\frac{1}{2} \log \det(\lambda S) \Big) = \frac{\partial}{\partial \lambda} \Big(\frac{1}{2} \log \big(\lambda^k \det(S) \big) \Big) = \frac{\partial}{\partial \lambda} \Big(\frac{k}{2} \log(\lambda) + \frac{1}{2} \log \det(S) \Big) = \frac{k}{2\lambda}$$

$$rac{\partial}{\partial\lambda} \Big(-rac{1}{2}\lambda \hat{m{b}}^{\intercal}m{S}\hat{m{b}} \Big) = -rac{1}{2}\hat{m{b}}^{\intercal}m{S}\hat{m{b}}$$

$$\frac{\partial}{\partial \lambda} \Big(-\frac{1}{2} \log \det \big(\boldsymbol{J}(\lambda) \big) \Big) = -\frac{1}{2} \mathrm{tr} \big(\boldsymbol{J}(\lambda)^{-1} \boldsymbol{S} \big)$$

Hence in total

$$\frac{\partial \ell(\lambda)}{\partial \lambda} \approx -\frac{1}{2} \hat{\boldsymbol{b}}^{\mathsf{T}} \boldsymbol{S} \hat{\boldsymbol{b}} + \frac{k}{2\lambda} - \frac{1}{2} \mathsf{tr} \big(\boldsymbol{J}(\lambda)^{-1} \boldsymbol{S} \big),$$

Hence in total

$$rac{\partial \ell(\lambda)}{\partial \lambda} pprox -rac{1}{2} \hat{m{b}}^{\intercal} m{S} \hat{m{b}} + rac{k}{2\lambda} - rac{1}{2} {
m tr} ig(m{J}(\lambda)^{-1} m{S} ig),$$

from which we can construct the estimating equation (omitting the details)

$$\lambda = \frac{\operatorname{tr}(\boldsymbol{J}(\lambda)^{-1}\boldsymbol{J}(\lambda=0))}{\hat{\boldsymbol{b}}^{\mathsf{T}}\boldsymbol{S}\hat{\boldsymbol{b}}} = \frac{\operatorname{dof}(\lambda)}{\hat{\boldsymbol{b}}^{\mathsf{T}}\boldsymbol{S}\hat{\boldsymbol{b}}}.$$

Hence in total

$$rac{\partial \ell(\lambda)}{\partial \lambda} pprox -rac{1}{2} \hat{m{b}}^{\intercal} m{S} \hat{m{b}} + rac{k}{2\lambda} - rac{1}{2} \mathrm{tr} ig(m{J}(\lambda)^{-1} m{S} ig),$$

from which we can construct the estimating equation (omitting the details)

$$\lambda = \frac{\operatorname{tr}(\boldsymbol{J}(\lambda)^{-1}\boldsymbol{J}(\lambda=0))}{\hat{\boldsymbol{b}}^{\mathsf{T}}\boldsymbol{S}\hat{\boldsymbol{b}}} = \frac{\operatorname{dof}(\lambda)}{\hat{\boldsymbol{b}}^{\mathsf{T}}\boldsymbol{S}\hat{\boldsymbol{b}}}.$$

which yields the iterative procedure:

- 1. fit model via penalised ML
- 2. calculate Hessian at optimum
- 3. update penalty strength
- 4. repeat 1.-3. until convergence

• first try \rightarrow worked much better than CV or AIC/ BIC, requiring only a few iterations for convergence (\sim 20 compared to hundreds or thousands for grid search)

- first try \rightarrow worked much better than CV or AIC/ BIC, requiring only a few iterations for convergence (\sim 20 compared to hundreds or thousands for grid search)
- but my situation is more complicated:
 - fixed effects
 - multiple penalties

- first try \rightarrow worked much better than CV or AIC/ BIC, requiring only a few iterations for convergence (\sim 20 compared to hundreds or thousands for grid search)
- but my situation is more complicated:
 - fixed effects
 - multiple penalties
- So why did it work??

The full setting

$$\ell_{\mathcal{P}}(\boldsymbol{a}, \boldsymbol{b}; \boldsymbol{\lambda}) = \ell(\boldsymbol{a}, \boldsymbol{b}) - rac{1}{2} \sum_{i} \lambda_{i} \boldsymbol{b}_{i}^{\mathsf{T}} \boldsymbol{S} \boldsymbol{b}_{i}$$

• fixed effects a

• multiple random effects
$$m{b}=(m{b}_1,\ldots,m{b}_p)$$

$$m{b}_i \sim \mathcal{N}(m{0}, m{S}^{-1}/\lambda_i)$$

Problem: If we integrate out **b**, marginal likelihood is more complicated beause of **a**.

The full setting

$$\ell_{\mathcal{P}}(\boldsymbol{a}, \boldsymbol{b}; \boldsymbol{\lambda}) = \ell(\boldsymbol{a}, \boldsymbol{b}) - rac{1}{2} \sum_{i} \lambda_{i} \boldsymbol{b}_{i}^{\mathsf{T}} \boldsymbol{S} \boldsymbol{b}_{i}$$

• fixed effects a

• multiple random effects
$$m{b}=(m{b}_1,\ldots,m{b}_p)$$

$$m{b}_i \sim \mathcal{N}(m{0},m{S}^{-1}/\lambda_i)$$

Problem: If we integrate out **b**, marginal likelihood is more complicated beause of **a**.

Solution: Assume $a \sim \mathcal{N}(\mathbf{0}, \infty)$ and integrate out both a and $b \rightarrow$ restricted maximum likelihood (REML), Laird and Ware, 1982

Quasi REML

Then, marginal log-likelihood is a function of $\lambda = (\lambda_1, \dots, \lambda_p)$.

Quasi REML

Then, marginal log-likelihood is a function of $\lambda = (\lambda_1, \dots, \lambda_p)$.

Partially differentiating w.r.t. λ_i yields very similar result:

$$\lambda_i = \frac{\mathsf{tr}([\boldsymbol{J}(\lambda)^{-1}\boldsymbol{J}(\lambda=0)]_{ii})}{\hat{\boldsymbol{b}}_i^{\mathsf{T}}\boldsymbol{S}\hat{\boldsymbol{b}}_i} = \frac{\mathsf{dof}(\lambda_i)}{\hat{\boldsymbol{b}}_i^{\mathsf{T}}\boldsymbol{S}\hat{\boldsymbol{b}}_i}$$
Quasi REML

Then, marginal log-likelihood is a function of $\lambda = (\lambda_1, \dots, \lambda_p)$.

Partially differentiating w.r.t. λ_i yields very similar result:

$$\lambda_i = \frac{\operatorname{tr}([\boldsymbol{J}(\lambda)^{-1}\boldsymbol{J}(\lambda=0)]_{ii})}{\hat{\boldsymbol{b}}_i^{\mathsf{T}}\boldsymbol{S}\hat{\boldsymbol{b}}_i} = \frac{\operatorname{dof}(\lambda_i)}{\hat{\boldsymbol{b}}_i^{\mathsf{T}}\boldsymbol{S}\hat{\boldsymbol{b}}_i}$$

Yields the same iterative procedure: model fitting via **penalised ML** and **updating** penalty strength.

Quasi REML

Then, marginal log-likelihood is a function of $\lambda = (\lambda_1, \dots, \lambda_p)$.

Partially differentiating w.r.t. λ_i yields very similar result:

$$\lambda_i = \frac{\operatorname{tr}([\boldsymbol{J}(\lambda)^{-1}\boldsymbol{J}(\lambda=0)]_{ii})}{\hat{\boldsymbol{b}}_i^{\mathsf{T}}\boldsymbol{S}\hat{\boldsymbol{b}}_i} = \frac{\operatorname{dof}(\lambda_i)}{\hat{\boldsymbol{b}}_i^{\mathsf{T}}\boldsymbol{S}\hat{\boldsymbol{b}}_i}$$

Yields the same iterative procedure: model fitting via **penalised ML** and **updating** penalty strength.

 \rightarrow smoothness selection procedure that makes nonparametric HMMs feasible!

Here comes RTMB (Kristensen, 2024) with **automatic differentiation**, natively supporting the full Laplace approximation for models written in plain R code

So did we gain anything?

So did we gain anything?

• with RTMB (for inner optimisation), possible to implement qreml() very generally

So did we gain anything?

- with RTMB (for inner optimisation), possible to implement qreml() very generally
- user only needs to specify penalised negative log-likelihood

So did we gain anything?

- with RTMB (for inner optimisation), possible to implement qreml() very generally
- user only needs to specify penalised negative log-likelihood
- **qREML** + **AD** \rightarrow efficiency skyrocketed!

Practical usage

library(LaMa)

pnll <- function(par){ # penalised negative log-likelihood
 ... # computing the negative log-likelihood
 nll + penalty(splinePars, S, lambda)
}</pre>

Practical usage

```
library(LaMa)
```

```
pnll <- function(par){ # penalised negative log-likelihood
    ... # computing the negative log-likelihood
    nll + penalty(splinePars, S, lambda)
}</pre>
```

par <- list(..., splinePars = matrix(0, 2, 10)) # parameter list dat <- list(..., S = S, lambda = rep(100, 2)) # data list</pre>

Practical usage

```
library(LaMa)
```

```
pnll <- function(par){ # penalised negative log-likelihood
    ... # computing the negative log-likelihood
    nll + penalty(splinePars, S, lambda)
}</pre>
```

par <- list(..., splinePars = matrix(0, 2, 10)) # parameter list dat <- list(..., S = S, lambda = rep(100, 2)) # data list</pre>

mod <- qreml(pnll, par, dat, random = "splinePars")</pre>

Real-data example

- Western Australia, extreme seasonal changes
- seven bull sharks tagged (14K observations)
- temperature, depth, and acceleration data
- response: overall dynamic body acceleration
- 2-state HMM: low and high activity

- Western Australia, extreme seasonal changes
- seven bull sharks tagged (14K observations)
- temperature, depth, and acceleration data
- response: overall dynamic body acceleration
- 2-state HMM: low and high activity

•
$$\mathsf{ODBA}_k^{(t)} \mid \{S_t = i\} \sim \beta_k^{(i)} + s_k(\mathsf{time}_t), k = 1, \dots, 7 \text{ (ectotherms)}$$

- Western Australia, extreme seasonal changes
- seven bull sharks tagged (14K observations)
- temperature, depth, and acceleration data
- response: overall dynamic body acceleration
- 2-state HMM: low and high activity

• ODBA_k^(t) | {
$$S_t = i$$
} ~ $\beta_k^{(i)} + s_k(time_t), k = 1, ..., 7$ (ectotherms)

• $\gamma_{ii}^{(t)} \sim s(tod_t) + AvgTemp_t * s(tod_t)$ (parametric in original paper)

- Western Australia, extreme seasonal changes
- seven bull sharks tagged (14K observations)
- temperature, depth, and acceleration data
- response: overall dynamic body acceleration
- 2-state HMM: low and high activity

• ODBA_k^(t) | {
$$S_t = i$$
} ~ $\beta_k^{(i)} + s_k(\mathsf{time}_t), k = 1, \dots, 7$ (ectotherms)

- $\gamma_{ii}^{(t)} \sim s(tod_t) + AvgTemp_t * s(tod_t)$ (parametric in original paper)
- 11 smooths in total, 162 parameters

- Western Australia, extreme seasonal changes
- seven bull sharks tagged (14K observations)
- temperature, depth, and acceleration data
- response: overall dynamic body acceleration
- 2-state HMM: low and high activity

• ODBA_k^(t) | {
$$S_t = i$$
} ~ $\beta_k^{(i)} + s_k(\mathsf{time}_t), k = 1, \dots, 7$ (ectotherms)

- $\gamma_{ii}^{(t)} \sim s(tod_t) + AvgTemp_t * s(tod_t)$ (parametric in original paper)
- 11 smooths in total, 162 parameters
- model fit takes \sim 5 minutes (32 penalised fits until convergence)

44 / 47

time of day

• **qREML** is (of course) much more generally applicable than just to HMMs

- **qREML** is (of course) much more generally applicable than just to HMMs
- you can find qreml() in the package LaMa, vignette "Penalised splines"

- **qREML** is (of course) much more generally applicable than just to HMMs
- you can find qreml() in the package LaMa, vignette "Penalised splines"
- models with i.i.d. random effects can be fitted using the same approach

- qREML is (of course) much more generally applicable than just to HMMs
- you can find qreml() in the package LaMa, vignette "Penalised splines"
- models with i.i.d. random effects can be fitted using the same approach
- RTMB will become an extremely valuable tool for fitting complex models

