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Abstract
To understand complex real-world phenomena, so-called hidden Markov models (HMMs) are a powerful instrument for statistically modelling time series data with underlying sequential
dependencies. While HMMs have gained popularity in various fields, they have also faced criticism for their reliance on the Markov assumption, suggesting that the present can entirely
describe future events without consideration of the past. Traditionally, HMMs assume homogeneity in the underlying process, where the most probable time spent in a hidden state is
one time unit. However, recent years have seen a growing interest in inhomogeneous models, allowing for time-varying state-transition dynamics, such as seasonality. We investigate
whether the common criticism of HMMs as being overly simplistic in capturing real-world processes remains valid for more complex models by deriving important properties of periodically
inhomogeneous Markov chains. Our contribution establishes novel tools for inference and model checking, and a case study reveals that inhomogeneous HMMs hold significant potential
to mitigate unrealistic consequences of the Markov assumption.

1 Motivation
1.1 Basic model formulation
• A basic HMM comprises an observed state-dependent
process {Xt}which is driven by an unobserved state pro-
cess {St}, anN -state Markov chain with transition prob-
abilitymatrix (t.p.m.) Γ = (γij), where γij = Pr(St+1 = j |
St = i), and an initial distribution δ, where δi = Pr(S1 =
i).

• Conditional onSt = i, the observed process is assumed to
be independent ofXk and Sk for all k ̸= t and generated
by a state-dependent distribution fi(xt).

1.2 Problem
• In the case of a homogeneous Markov chain, it is easy to
see that once a state i ∈ {1, . . . , N} is entered, leaving
it can be interpreted as a repeated Bernoulli-trial with
probability p = 1 − γii.

• Thus, the time spent in a state, also called the state
dwell time, is geometrically distributed with probability
mass function

di(r) = (1 − γii)γr−1
ii , r ∈ N.

• The geometric distribution is characterised by being
monotonously decreasing andmemoryless.

• Both properties may be considered unrealistic assump-
tions when modelling real processes.

• Example “sleeping”: The distribution of sleep duration
will, in general, not be geometric where the most proba-
ble dwell time is one time unit but exhibit amode greater
than one, corresponding to the most probable sleep du-
ration.

2 Periodically inhomogeneous Markov
chains

• Recent years have seen growing interest in inhomoge-
neous HMMs where the t.p.m. Γ(t) is allowed to vary over
time, by linking it to external covariates.

• Here, we focus on a special case of inhomogeneity,
namely periodic variation or seasonality. More formally:

Γ(t) = Γ(t+L), for all t = 1, . . . , T, (1)
where L denotes the length of one cycle (e.g. for hourly
data and time-of-day variation L = 24).

2.1 Periodic stationarity
• Instead of interpreting the t.p.m. as a function of time, it
has become common practice to consider a simpler sum-
mary statistic, namely the periodically varying uncondi-
tional state distribution.

• This is usually approximated by the hypothetical sta-
tionary distribution ρ(t) that would result if the Markov
chain was homogeneous with t.p.m. Γ = Γ(t), i.e. ρ(t) is
the solution to ρ(t)Γ = ρ(t) subject to ∑N

i=1 ρ
(t)
i = 1 (Pat-

terson et al., 2009).
• This approximation will, in general, be biased because it
ignores the preceding process dynamics and instead pre-
tends that the process has been following the dynamics
as implied by a constant Γ(t) for a considerable time.

• For periodically inhomogeneous Markov chains as de-
fined in (1), there is no need for such an approxima-
tion. Consider for fixed t the thinned Markov chain
St, St+L, St+2L, . . . which is homogeneous with constant
L-step t.p.m.

Γ̃t = Γ(t)Γ(t+1) . . . Γ(t+L−1). (2)

• Provided that this thinned Markov chain is irreducible
and aperiodic, it has a unique stationary distribution
δ(t), which is the solution to

δ(t)Γ̃t = δ(t) (3)
(see also Ge, Jiang, and Qian, 2006; Kargapolova and
Ogorodnikov, 2012; Touron, 2019).

• The true periodically stationary distribution and the bi-
ased approximation are shown in Figure 2.

2.2 Dwell-time distributions
•We want to apply the knowledge gained from Section 2.1
to characterise state dwell-time distributions in a peri-
odically inhomogeneous setting.

• As a first step, we derive the time-varying state dwell-
time distribution, i.e. the distribution of the dwell time
in state i, when the transition into state i is known to be
at time t.

• For each state i and time point t = 1, . . . , L, this distribu-
tion is defined by its probability mass function

d
(t)
i (r) = (1 − γ

(t+r−1)
ii ) ·

r−1∏
j=1

γ
(t+j−1)
ii , r ∈ N. (4)

• It can be regarded as a generalisation of the geomet-
ric distribution to a time-varying success probability, for
periodic settings.

• Consequently, it is not characterised by a strictly de-
creasing monotonic pattern (see Figure 1).
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Figure 1: Time-varying dwell-time distribution of an exam-
ple chain, visualised for three distinct times.

• The time-varying dwell-time distribution allows for fine-
grained inference on the state process. However, it may
be cumbersome to interpret all time-varying dwell-time
distributions.

• In addition, the inferential focus concerning state dy-
namics will often be on the unconditional distribution,
not explicitly conditioning on the start time of the stay.

• This overall dwell-time distribution can be derived as a
mixture of the time-varying dwell-time distributions and
is defined by its probability mass function

di(r) = L∑
t=1

w
(t)
i d

(t)
i (r), r ∈ N, (5)

with the mixture weights defined as

w
(t)
i =

∑
l∈S\i δ

(t−1)
l γ

(t−1)
li

∑L
t=1

∑
l∈S\i δ

(t−1)
l γ

(t−1)
li

, t = 1, . . . , L,

where S = {1, . . . , N}, Γ(0) = Γ(L), δ(0) = δ(L), and δ(t) as
in Equation (3).

• It particularly serves as a model-checking tool for the
state process when comparing it to the empirical dwell-
time distribution obtained from the decoded state se-
quence (see Figure 3).

3 Application: Drosophilamelanogaster
• Fruit flies have a pronounced circadian rhythm, and re-
searchers are interested in its reaction to external vari-
ation. Therefore, flies were trained under light-dark (LD)
and constant darkness (DD) conditions.

•We model the half-hourly time series (L = 48) using a
2-state HMM to describe a low- and high-activity state,
where for i ̸= j the transition probabilities are modelled
by trigonometric functions with increasing frequencies:

logit
(
γ

(t)
ij

)
= β

(ij)
0 + 3∑

k=1
β

(ij)
1k sin


2πkt

48

 + β
(ij)
2k cos


2πkt

48

.

• The periodically stationary distribution varies substan-
tially over the course of one day, and there is a clear dis-
crepancy between the two lighting schedules (see Fig-
ure 2).
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Figure 2: Periodically stationary distribution as a function
of the time of day. True stationary distribution (light blue)
compared to biased approximation (yellow).

• The overall state dwell-time distribution is non-
geometric and shows bimodality, especially in the DD
condition due to longer stays in the evening (see Fig-
ure 3).
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Figure 3: Overall dwell-time distribution of the high-activity
state, analytically (blue bars) and empirically (grey dots)
derived from the fitted HMM.

4 Discussion
•We investigated the distinct properties of periodically in-
homogeneous Markov chains, allowing us to analytically
derive the periodically stationary distribution of states
and a time-varying and overall dwell-time distribution.

• These serve as novel tools for inference and model
checking in scenarios characterised by periodic varia-
tion.

•When there are other, unobserved reasons for non-
geometric state dwell-time distributions, periodically in-
homogeneous HMMs are unable to describe the state
process accurately.

• In such cases, hidden semi-Markov models, explicitly
designed to model arbitrary dwell-time distributions,
should be considered.
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